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The coupling of unitary self-conjugate SL(3,R) multiplicity-free irreps is explicitly
calculated. It is proven that pair-wise coupling of a finite number of these self-conjugate
irreps never contains a continuum SL(3,R) irrep which is multiplicity-free. The
significance of SL(3,R) symmetry in nuclear and hadronic systems is discussed,

including implications for the coupling of quarkels.

1. ORIGIN AND SIGNIFICANCE OF THE
PROBLEM

Systems having SL(3,R ) symmetry are of fundamen-
tal importance in both nuclear structure physics'” and ha-
dronic structure (“‘quarks”) physics."*® The elementary

structures (unitary irreps) of SL(3,R) are all known,’ and
among these there are precisely three self-conjugate multi-
plicity-free irreps (not counting the identity) which are of
particular interest since they are discrete, and might possibly
serve as models for fundamental “particles.” Of these three
self-conjugate multiplicity-free irreps, there is a unique spin-
orial irrep which is of special interest since it can be consid-
ered as a model for a “deformable quark.”"*

The present paper has as its purpose the investigation of
all possible couplings of these self-conjugate multiplicity-

free irreps among themselves, preserving SL(3,R ) symme-

try and ascribing to these irreps both bosonic and fermionic
symmetry character. These results—which are discussed in
detail in Sec. 2—have one surprising aspect: it is not possible
to couple, pairwise, any finite number of self-conjugate multi-
plicity-free irreps to produce a multiplicity-free irrep lying in
the continuum." We prove this by direct construction in Sec.
2 and by a more elegant argument in Sec. 3.

Let us indicate briefly the importance of SL(3,R) in
nuclear structure physics. The group SL(3,R ), is, by defini-
tion, the group of rotations and volume-preserving deforma-
tions in three-dimensional space. Since it is known'? that nu-
clear forces tend strongly to conserve nuclear volume, but no
nuclear shape, the group SL(3,R )should accordingly be a
useful approximate description of rotations and vibrations
(below the onset of breathing modes, say). (This view was
originally suggested in Ref. 1 and applied in Ref. 2.) Since
the group SL(3,R ) is noncompact, this approximate descrip-
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tion of nuclear structure leads to rotational bands that are
nonterminating, in sharp contrast to the terminating band
structure of the Elliot model [SU(3)]. In a sense both
SL(3,R) and SU(3) deal with the same (shell model) har-
monic oscillator structure, but organize the levels different-
ly. In SL(3,R ) all levels (in the three-dimensional harmonic
oscillator) having a given angular momentum are organized
into coherent (continuum) states. Unlike Elliot SU(3),

which is its own covering group, the covering SL(3,R)
(double covering) can, however, possess spinors. This makes
possible models in which spin can be viewed as intrinsic.

Extensions of the SL(3,R) symmetry to include vol-
ume changes have been discussed in Refs. 3 and 4 (for nucle-
ar physics).

It would appear from this discussion that SL(3,R)
symmetry is heuristic, and not fundamental to nuclear struc-
ture. It has been shown recently,* however, that the collec-
tive motion of any (nonrelativistic) many-particle system
necessarily includes, besides the angular momentum, a vor-
tex angular momentum which together with the three intrin-
sic collective momenta generate GL(3,R ) DSL(3,R). It fol-
lows that these symmetries are indeed more fundamental
than hitherto expected; whether or not the nuclear spectra
actually display this symmetry becomes a particularity of
specific nuclear forces.

The introduction of SL(3,R ) as a fundamental symme-
try of hadronic matter was first proposed in Ref. 1. The moti-
vation for this proposal lies in the Regge band structure
where the hadrons (having specified parity and flavor quan-
tum numbers) are found to lie on approximately linear tra-
jectories (M ? « spin) having spin J, J + 2, J + 4,-.-. Irreps of
SL(3,R ) with such band structure were given in Ref. 1; the
generalization to SL(3,R ) was given in Ref. 13. The unique
self-conjugate multiplicity-free spinor irrep (the quarkel)
was first found by Joseph,'* and independently by
Weaver.'*'* The proper embedding of the quarkel as a quan-
tal Regge band in a fully explicit relativistic Poincaré-covar-
iant structure was demonstrated in Ref. 17.
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The importance of the unique spinorial irrep for math-
ematical physics was only recently pointed out in a paper by
Ne’eman’ (correcting, incidentally, a misinterpretation of a
result of Cartan). For the generalization of the Poincaré rela-
tivistic symmetry to affine relativity® the quarkel irrep serves
as a global spinor.

Despite the brevity of the above sketch, it should be
clear that SL(3,R ), and the quarkel in particular, have a
valid claim of being fundamental. If this is accepted—and
the occurrence of SL(3,R ) symmetry in so many distinct
branches of physics supports this view—then it is of impor-
tance to investigate in detail how to implement SL(3,R)
symmetry-preserving couplings. It is natural to consider, for
example, models in which a collection of fermion quarkels
interact to produce a sort of “fluid,” very much like a shell
structure in nuclear physics but in which (unlike, say, the f;,,
shell) the shell structure can accommodate unlimitedly
many fermions (see Sec. 3).

The first step in such a program is to determine the
possible couplings which preserve the symmetry. This is ac-
complished in the next section.

2. EXPLICIT CALCULATIONS
A. Resumé of the Lie algebra of SL(3,A)

Both SL(3,R ) and its covering group SL(3,R) have
eight infinitesimal generators, usually chosen in such a way
that three of them are generators of SO(3), the maximal
compact subgroup of SL(3,R ), while the remaining five are
the components of a quadrupole operator. Written in a nor-
malized spherical basis, the commutation relations satisfied
by these generators are:

[JvJ;l]: +J 0 owal= =
[ + l’ ] :':[3_ m(m+1)]1/2 m+ 1
m = O, + 1: + 2y [TQ’T—Z] = — 4J0. (21)

These commutation relations given above constitute a
minimal set of commutation relations; the remaining ones
are obtained combining properly Egs. (2.1). In doing so, one
obtains the formulas

m=0,+1,+2,

[JO’ Tm] = me’ (22)
(T, T,.] = — V10 <2m2m'|1m +m'>J,, o
Defining
2 ( - )m m —
HT=-V3/35 3 (=y ™
><<1m s 20 4 M I T o — (2.3)
z ( )m‘ ~+ m;
\/5 m,m,
X2m2m,2m, + mHT, 1, T, .
it can be verified that the operators
_ L =L iry, (@4
Sy = AT, Si= T T Q)

1616 J. Math. Phys., Vol. 20, No. 8, August 1979

are Casimir invariants of SL(3,R ).

To find irreps of SL(3,R) in the chain SL(3,R)
DSU(2) DU(1), one first writes the basis states as |p,g;Jm),
where p,q labels the irrep of SL(3,R) one is dealing with
while J and M are internal quantum labels related to the
angular momentum and its z projection. The matrix ele-
ments of the operators /,, have their usual expressions. For
the matrix elements of the 7',, operators one exploits their
irreducible tensorial character relative to SU(2) to write

p.g)'M\T,|p.gIM >
_ g NTWGI > gpfom|sm,

2.5
V4l
Now, using Egs. (2.2), the recoupling relation'*
aabp |ea + ) {ea + BdS|cy)
= 3V (2e12)2f + 1)XbBdS| fB + &

>f< (aafB + S|cy>W (abedief), (2.6)
and the unitarity condition
gl T \pgid > = (=Y ~Xpgd | Tllpgd > (2.7

one finds a set of equations relating the reduced matrix ele-
ments {p,g;J || T ||p,q;/ ">- These equations can easily be
solved in the case of irreps such that the matrix elements
with |J' — J | = 1 vanish identically. For those irreps one
obtains?:

20)2J + DI+ D\2
b |Tlpad>=n( ERFAILEDNT 5
Kp.gi/ I T llpgsd + 21

— QN — DI — 2)(1 + (U”fl)) (2.9)

where 7 is any real number and J can assume the values
contained in any one of the following three sets:

(a )J—1 22 (with 7 =0 only),
(ﬂ): J= 0’2y4""a (210)
(r):J = 1,3,5,-.

Since we have chosen<J + 1||T||J > = 0, Egs. (2.10) tell
us that one has found three irreps. From (2.8) and (2.9) it
follows that for these irreps the Casimir invariants (2.4) as-
sume the values

.
cyz:——l‘——?zz—, e/;:—‘L.
4 36 9V 105
Since under conjugation 7 goes to — 17, the discrete irreps
(2.10) with 5 = O are self-conjugate. The three self-conju-
gate 1rreps have the same values for the invariants

(%, = 1,7, = O)and aredistinguished by the labels (), (B),
) denotmg the spin content." For this reason the states of
these irreps will be denoted in the following by M >,

where x4 can be (@) with 7 = 0, or (8), (¥), with 77 = 0, 0.

.11y
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B. Realization of the SL(3,7) generators by the Jordan-Schwinger map

Let b,,, be the fermion (or boson) creation operator of the state |0,u;JM > of any of the irreps (2.10) with = Oand b,,,
the corresponding fermion (or boson) annihilation operator. It is well known that the one-body operators

L= Y O M IX|0usIM Yb,py by 2.12)
IMITM'
satisfy the same commutation relations as the generators X, themselves (“Jordan-Schwinger mapping”). Therefore, the one-
body operators

Fm= 2 OpIM + m|J [0 IM by, bypy m =0, £ 1, @.13)
JM

Tn=S O "M+ m|T, |0psIM Yby pg+ mbryy m=0,+1,+2, @.14)
JMJ’

provide a realization® of the SL(3,R) generators.

We now try to realize a generic state |7,u;JM > of any irrep of type (2.10) as a two-body operator acting on the vaccum,
ie.,

i IM> = 53010 (2.15)

Taking 7} to be

O = Z AT by (2.16)
JMIM, ) o

one sees that in order that the realizations X, of the generators have in the basis (2.15) the same matrix elements as the X; inan
abstract basis |77,u;JM >, it is necessary and sufficient that the following commutation relations hold

(200 = S (s "MXM O T @.17)

o
By angular momentum theory, it follows that the operators

ﬁ%}#) = Zf51 z <J1M1J2M2|JM>bJ,M.ble, (2.18)
I,

MM,
satisfy Eq. (2.17) for 27, = .., o F -1, irrespective of the values of the constants f. For #°,= .7, (m =0, + 1, + 2), Eq.
(2.17) imposes some constraints on the constants f.

In order to find those constraints, one starts by first evaluating the commutator of .77, by 7}, Using Eqgs. (2.14),
(2.18), (2.6), and (2.7) one finds

[T mCHT S (=Y I MMM + myIM 2m] M+ myV (2f +)

JMIM. f

. J J =2

A Y RS
J, J Ji+2

2 7 ])bJ]M,bJIMI. (2.19)

Equating this expression to the RHS of Eq. (2.17) and using the linear independence of the set {5, 5,0, 5, With J,54J,;
by p by g, With M,55M, | one obtains

><<f5, - yz)[(lfl - 2)2J, — 1)(2J1)]”{

X2+ 3)2J, + 4)] ”2{

S J J =2
ff.-uz[(lln—2)(2Jl—1)(211)]‘/2[2 7 J+a]f§,+y,[(2-/1+2)(2~11+3)(ZI1+4)]“2

X[JZ J J+2

2 J+a]+(—)"+f5,a—z[(2~fz—2)(zfz—1)(212)1"2[" J 12‘2]

2 J, J4a
+(_)afj‘11+2[(2‘]2+2)(2‘]2+3)(2J2+4)]1/zl-]1 J Jz+2]

2 J, J+a
=(=)'+th+y whda), for a=0,41,+2, ’ (2.20)
where
(2 +2) + ) + 4))‘/2( 7 )1/2
A(J,JJ.2) =< 1+ ———— 4UJ ) fh+2
i ) + I+ 9) (2 + 3y T+ D15

(2 — 22J — DEJ)\ 2 7\ -
I)JZ’Jy —2)= — T I - ik
AV ) ( (2J + 3)(2J — 3) ) (1+ (2.]—1)2) AT =D f55%
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QNI + 2)(2J) 12 ,
32— D2+ DT + 2)) 1A I f 34,
syt (2.21)

A (J17J27J70) = (

and 4 (J\JJ;) is equal to 1 when the three angular momenta J,, J, and J, satisfy the triangularity relations, being zero
otherwise.

The next step is to substitute in Egs. (2.20) the explicit expressions of the 6 — j symbols and try to solve the resulting set of
equations in the unknown f’s. Before doing that let us briefly examine which irreps of type (2.10) are expected to be realized in
this way.

Since J, and J; are both integers or half-integers, J can assume only integer values; this excludes the irreps (2.10) of type
(@).

When the b s are fermion operators, Eq. (2.18) implies that /7, = — (— )" " ~7fJ  and, consequently /! ,,,, =0
which, in turn, implies [by Egs. (2.20)] that # {37 with odd values of J also vanish identically, thereby excluding irreps of type

(7). Concerning irreps of type (B ), only those with 77 = O are realizable as can be seen by the arguments presented in the next
subsection.

When the b’s are boson operators, one has f5, = (—)"*7 ~/f7 , and consequently f} ; = 0 which implies, as seen
above, that the 2/} of the irreps of type (y) vanish identically. For the irreps of type (8 ) one has the same situation as that
when the b ’s were fermion operators.

Since not all irreps of type (2.10) can be realized by (2.18), it is instructive to examine which irreps can be obtained by
coupling two kinematically independent self-conjugate (i.e., 7 = 0) irreps (2.10).

C. The reduction of the direct product of two self-conjugate multiplicity-free irreps of SL3R)

Let us consider the linear combinations of basis states of two self-conjugate irreps of type (2.10):
|pops; IM > = z f5,12<J1M1J2M2|JM>O,/‘§ J M H|0uy; LMD, (2.22)
JMJIM,

such that under the action of the generators of SL(3,R ) they transform like the basis states of an irrep [77,u,] of type (2.10).
That is, they must satisfy:

(Jm)mtalln’/h; IM > =, IM + ml"m‘??u“ﬁ JMN’?"US IM + m), 2.23)
Tl Mps IM> = % (ppsd +a M+ m|T, |nuy IM |y IMdus J +a M+ m), (2.29)
=0,+2

where (X ), = X, ® 15, + 1(;, ® X(,), as usual. Since the Clebsch—-Gordan coefficient in (2.22) vanishes if the J’s do not
satisfy the triangularity conditions, one may assume, without losing generality, that /' ; = 0 when 4 (J.J,J;) = 0.

Equation (2.23) is automatically satisfied due to the (J,) ® (J,)—>(J ) coupling existing in the definition (2.22). On the other
hand, Eq. (2.24), by the use of Eqs. (2.5) and (2.6), implies that the /s must satisfy Eqs. (2.20) but now with no symmetry
condition since |0,u,; JM M > and |O,u,; J,M,) are kinematically independent.

The structure of Egs. (2.20) allows one to prove that only the irreps [0,u,] can be obtained by Eq. (2.22); i.e., only the
irreps with 7 = O are present in the multiplicity-free part of the reduction of [0,.,] ® [0,u¢,]. In order to prove this claim one has
to examine the nine possibilities (see Table I) that one would expect for i, in Eq. (2.22) by considering only the angular
momentum content of [0,.¢,] and [O,u,].

Consider ; = (). To obtain J = 0 one must have J, = J, which implies ¢, = u,. Taking J = 0 and @ = 2 in Egs. (2.20),
the LHS vanishes by the triangularity conditions while the RHS gives /5 ; multiplied by a nonzero number. Therefore, f 5
must be zero. Now take J = 2,J, = J, + 2, and @ = 0in Eq. (2.20). Two of the /s in the LHS vanish by triangularity while the
other two vanish because they are of the form /7 ;. On the other hand, for 740, the RHS of this equation gives / 5 2
multiplied by nonzero number, which implies /'3 + 2 = 0. Since u; = u,, the only J,’s that can be coupled to J, to give J = 2
areJ, = J,,J, + 2. One concludes then that |7=£0,(5 );00) given by Eq. (2.22) vanishes identically and, by Eqs. (2.20), the same
occurs for all |7£0,(8 );JM >. This proves that our claim is true for the possibilities 1, 5, and 7 of Table I. Similar arguments
can be used to show that the claim is true for the remaining possibilities.

Now that we have proven that the irreps [7=£0,u] are not present in the reduction of [0,u,] ® [O,u,], let us find the
coefficients f in Eq. (2.22) that make the reduction [0,12,] ® [0,,)—[0,u,]. Substituting in Egs. (2.20) the explicit expressions
of the 6 — j symbols?' and putting 7 = 0, one obtains the following set of equations:

p (s(s + 16 + 2) + 3)u — Duu + 1)(u + 2))1/2 p ((v — Do + D + 2)C — D@+ D +2) )vz
S @, — I+ D) Ehe 2+ 120, + 5)
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s+ D +2)6+ 30— D+ D+ 2))“2 ' ((v ~ Do + D + 2)(u — Du(u + D + 2))‘/2
- 32, + 1) i (&, + 1)+ 5)

= (2 + 2)(J + 3)(J + 433 only for A (JJJ +2)=1; (2.25)
s (S(S + 1) 4+ 2)(¢ + 2)(u — Du(u + 1)(v — 1))”2 F ((s + 3¢ — D+ D(u + v + D + 2))"2
Aot @, =3, + 1) 2 QJ, + D+ 5)
L 2( G+ 1)+ 2)(¢ — Det+ D@+ )@ —1) )1/2 _f1, 2((s + 3)(t + 20w — Due(u + Do + D + 2))v2
o (2, =32+ 1) e (2, + D2, + 5)
=0 only for 4(JJJ+ 1) =1; (2.26)
£ (s(s + 1)+ D+ 2)(u — Du — 1)v>1/2 A ((s +2)(s + 3Nt — D (u + D + 2)(v + D + 2))1/2
Sz QJ, = 3)J + 1) o J, + 52T, + 1)
s+ D — De + D+ 2)@ — Doz, (s + 2)(s + 3)t + 1) + 2)(u ~ Du@ + D@ + 2) 2
+/50- ( Q. — ), + 1) ) S ( QJ, + 52, + 1) )
=0 only for 4 (JIJZJ) =1; 2.27)
A (st (¢ + 1) + 2)(u — D — Do + 1))1/2 o ((s + 1)(s + 2)(s + 3t — Dau(u + D + 2w + 2))vz
T 2, -3+ 1 ' @+ 5+

+ /- z(

st — Du(u + D@ + 2)(v — Do + 1) 172
+f "”“2( (J, — 3)2J, — 1) )
T ((s + D6 420 (Jr;)i (ts;ZzlJ)(:)Z)(u —Db+2) )”2 —0 only for 4 (I ~ 1) = I; 2.28)

s ((r~ DI+ 1) + 2@ — Do + 1)(v+2))v2 Y (s(s+ DG + 2)(s + 3)(u — Dutu + 1)(u+z))v2
o W, - )+ 1) aed Q@+ 52, + 1)
Lf (<u~ Du(u 4+ D + 20 — Dolv + 1)(v+2))v2 L f (s(s+ DG+ 26+ — e+ 1)(r+2))v2
2 (2 — 3}, + 1) Shr? QJ:+ 52, + 1)
=QJ—-2)2J - 1} )f’ 2 only for 4 (J,JJ —-2)=1; 2.29)

where

S=Jl+Jz+J, t=—Jl+Jz+J, u=J1-'Jz+u,, v=Jl+J2‘—-,. (230)

If one fixes p1,, 1, and ps, these equations allow one to determine, up to a multiplicative constant, all the /7, . for
J = JoJo + 2,40 + 4,-, where J, is the minimum value of J. For instance, when g, = g, and u, = (8), one obtams

@ =2

(_;_,=/1(__)(J—J)/2_(_2‘]74__( +1)1/z, f31=0,
L =2 @ — 3722 = 21 (2T + 2)(2J + 3)\172
Suea =l s =4(=) @ \ 6@+ 4 )"

Ay =D QI YD+ D+ DD =DV e
Sir=t(=) @\ @+ 35T+ 9T - N -2 ) Susa=lieai=0

4 _ ra = a2 2d = DN (ST + T + 6)(2T + 3} 4+ 2)\12
Jura=Siras=A(=) @)\ 56(27 + 82 + 5)(2J + 4) ) ’ 23D
where?
r 4
n(n — 4)(n — 8),... ;, for n =1,2,3,.-,
nte = 4 : (2.32)
L 1 for n =0, — 1, — 2,

Obtaining all the f j 5, for the first values of J, for the eight possibilities of Table I, one observes that all of them fit into the
general formula:
I =A(—=)C" 2.1)/4( (s — D' — 21 — 3z — 2)(u — 3 (u — DM — 24 — )T, + DR, + 1) )V 2 233

SM(s + DI — Dl (u — DFw — Dl
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for (v — 2J,)/4 = integer,
f34. =0, for (v — 2J,)/4 = not integer,
where J, is the minimum value of J in [0,u;].

The case [0,(3)] ® [0,(»)]—[0,()], although expected by angular momentum coupling, is not realized. When one solves
Egs. (2.25)-(2.29) forJ = 1and 3onefindsf ), , , =f, , = O. Since, in this case, the only J, that one can be coupled to J, to
give J =l are J, = J, + 1, one concludes that |0,(3);1M > = 0 and consequently all |0,(¥);JM > vanish identically.

The proof that Eq. (2.33) is the general answer goes by induction on J. Itis true for J = J,,, J, + 2,J, + 4. Equation (2.25)
givesus £ } 2 in terms of /7 __,, which are known by the induction hypothesis. Using those values given (2.33) one sees that
the result obtained for £ T * checks with Eq. (2.33). To finish the proof one checks that the expression of /7, given by (2.33)
satisfies Egs. (2.26)-(2.29).

|

D. Coupling of [0,:4] and [0,:.] to the identity Using the symmetry of the dot- and s -product we see that
A+(A s B) = (A s A)B = 0 and similarly for the term in B,
B(AsB)=B-BsA)=(BsB)A=0.

We conclude that .#; (composite system) = 0, and
hence that only self-conjugate irreps can be formed in the

Since in the identity representation one has that the ma-
trix elements of all generators are zero, one has that in (2.22),
J must be zero and one must have J, = J, which implies
1 = p,. For the f9 ; one obtains a set of equations which

differs from the set (2.25)-(2.29) by having all the RHS equal product. . )
to zero. This set of equations is easily solved giving The (multiplicity-free) coupling of two quarkels thus
yields only the (bosonic) irreps {0,(3)] and [0,(7)]. Coupling

fo=A(=)V 2T+ D)2 - D] (2.34) in a third quarkel then yields only the irrep [0,(a)]. Although
where A is an arbitrary constant and J, is the minimum of Jof ~ this composite irrep is indistinguishable under the group

irrep [O,u]. from the quarkel itself, it should be noted that—by using a
quarkel-counting SL(3,R) invariant operator, for exam-

3. CONCLUDING REMARKS ple—the two systems can be distinguished. (Moreover, the

structure of the composite spin-} state inherently involves
states with spins greater than 4.) Coupling in more quarkel
systems leads to a repetition of the couplings already found.*
Only for a system having infinitely many statesissuch a
curious property (“stability under many-particle-coupling™)
possible. (See note added in proof at end of paper.) It is in-
triguing to observe that such an unusual structure allows a
model in which the existence of new and heavier ‘“fundamen-
tal quarks” is unnecessary to hypothesize, such structures
appearing quite naturally as composites of quarkels.

The most surprising result found in the explicit calcula-
tions of the last section is that the self-conjugate multiplicity-
free irreps do not couple to form general multiplicity-free
irreps. Stated more provocatively, no matter how many
quarkels are coupled together (provided the number is odd
and finite) the multiplicity-free part of the result still has the
spectrum of a quarkel. Such a curious property must have a
more instructive proof than our previous direct calculation.
We have indeed found a more elegant proof which we now
present.

First recall that under conjugation the third rank invar-
iant .#, reverses sign (¢ :.# ,— — £ ,), so that the seif-conju-
gate irreps are characterized by .#; = 0.

Recall also that the third rank invariant is found by first

coupling the generators to form the symmetric adjoint oper- TABLE L. Expected values of 1, in Eq. (2.22) obtained by considering only
ator X s X and then forming an invariant with X, i.e,, the angular momentum content of [0,.2,] and [0,,).
&, = X-(X s X). [The symmetry of these products shows
that .7, = (X s X)-X also.] al #: My

The significant fact, which we will use in the demon- (@) (@) @) 1
stration to follow, is that for the discrete self-conjugate (mul- ™ 2
tiplicity free) irreps not only does .#; = 0 but also the sym- (@) B) (@ 3
metric adjoint operator X s X itself vanishes identically.*

(a) » (@) 4

Consider now the coupling of two kinematically inde-
pendent such systems, with generators A and B to form the ) ®) @) 2
composite generator X = A + B, where it is assumed that @
[A,B] = 0. The symmetric adjoint operator now takes the ) ) ) 7
form X s X = 2A s B, since A s A = Bs B = 0. Forming the » 8
invariant .#, leads to m & o .

#, (composite system) = 2(A + B)-(A s B).
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Comment on the Wigner 9-j symbol

R. Chatterjee and J. M. Dixon®
Physics Department, The University of Calgary, Calgary, Alberta, Canada T2N IN4

(Received 21 December 1978)

A number of errors in the algebraic formulas of Rotenberg et al’s The 3-j and 6-j Symbols have
been corrected. Attention is drawn to a few other simple new algebraic relationships.

The importance of the 9~ symbol is well known from the work of Wigner quoted by Jahn and Hope? and is used
extensively in the atomic theory of angular momentum by Yutsis ez a/.’ and many others.* It appears in the calculation of the
matrix element of any double tensor when the Wigner-Eckart theorem is applied. A number of tables exist such as those of
Jucys,® Howell,* and Landolt-Bornstein.” Stassis and Williams® have already corrected one of the algebraic formulae, involv-
ing a 9-j symbol, quoted in Rotenberg et a/.® In this note we will point out other errors quoted by Rotenberg et al,® correct them,
and provide a few new simple relationships.

The 9-j symbol (square brackets) can be expressed either in terms of 6-j symbols (curly brackets) or 3-f symbols (round
brackets). Thus

S L T e s Js s de
L o 1 7 s 3 9
D A R T R AR AR | A 1)
. . , 7 Us Jo JIUs 1 JdU 11 1y
Jr Js  Je
_ (]1 Lo )(j4 Js e )(17 Js I )(]1 Ja )5 )(Jz Js s )
= \my om, my/\m, ms mg\m;, mg mg/\m, m, my/\m, ms my
X(]} Je Jo ) @
my, my my

There are two major applications of the 9-j symbol in physics. The first is to transform a state in a j/~j coupling scheme to
an L-S coupling, which is given by

s, s, S

|5y 1) 7y (52 1) oMy = > [(2S + DL + )2, + D), + 1)]”2[11 h L}X |G, 85) S (U, L)) LJM).
o jo g2 J

The second important application of the 9-f symbols is to evaluate the reduced matrix elements of the double tensor

W *k9% gefined by Judd.” The latter many-electron double tensor is defined with rank k, in spin space and rank k, in orbital
space, k being the total rank of the tensor. The reduced matrix elements are given by

5 Ly
WﬁALHWW“HV%bm:K%+m%+m%+m”XF 6.4W&AHW“WW%G) A3)
k, k, k

The reduced matrix elements (y s, /|| W kika)| |7’ s, 1,) has been tabulated by Nielson and Koster" with k; =1, k, =1
for the p”, d ", and f" configurations. Chatterjee ef al.'? have extended this tabulation for k; = 1 and k, = 0 to 6 for all these

configurations.
We have re-examined the 9-j symbol using Eq. (2) in the light of Regge symmetry. We have found that Rotenberg (R) e
al.’s Egs. 1.11 and 1.12 are incorrect. The correct forms, obtained from Regge symmetry, are given below:

v J T Gt 3+ +my) 1+ +my) 30U+, +my)
=(~-1 e e oL s
my  m, m; i — 3a+is—my) =30+ —my) Jy— 3, +j— my)
replaces Eq. 1.11 (R) and
(jl b I ) _ (jl s+ +my) 3, +ji—my) )
m; m,; m; Jo—Jy —my—Yj—h+m)  +my—3,—j—my)

replaces equation 1.12 (R). To derive these relations, we have used the connection between a 3-j symbol and Regge’s matrix,

“Visiting Associate Professor at the University of Calgary during 1978/79.
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then used the reflection symmetry about the major diagonal of this matrix, and converted from the new Regge matrix toa 3+

symbol by solving nine equations.

Rotenberg et al.’s' Eq. (3.8) should be replaced by the following correct equation given by Kennedy ez al.”:

A B 2
[, , (=b*  (=D* (=D
Hla B C| = —[1 C))
2. Q2d + DQ2e+ DR2f+ 1) 2 + A+ 1 B+ 1 et 1
d e s
Landolt-Bornstein’ also give Rotenberg et al.’s' erroneous form for this latter equation.
Rotenberg et al.’s' Eq. 3.20 should be corrected by the following equation:
0O b ¢ b s
d e f =(—1)”*‘”””[(2d+1)(2b+1)]"/2[ j]&(b,c), (5)
d e e
d e f
which is easily obtained from Eq. 3.19(R).
In Rotenberg et al.’s' Eq. 3.19, if we put f= 0, then we obtain the following relationship:
a b e
a b e|l=(—DX+2+[2a + 1)2b+ )2+ 1)] '~ (6)
0 0 O

This expression (6) will be useful to calculate the reduced matrix elements of the double tensor W, In Rotenberg’s Eq.

3.19, if we put d = 0, we get the following equation:

a b e
e 0 el=(—D""2"°[Qb+1DRe+ 1] " )
b b 0
From Rotenberg et al.’s' Eq. 3.22, if we put £ = 0, we get
a b x
Sx+I(—=D¥c d e|l=(— D =2 [2c + 1] ~ '8(b,e)8(c.g)8(ah ). ®)
* f g h
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Representation matrix elements and Clebsch-Gordan
coefficients of the semisimple Lie groups

A. U. Klimyk and A. M. Gauvrilik

Institute for Theoretical Physics, Academy of Sciences of the Ukrainian SSR, Kiev, USSR

(Received 21 January 1976)

We give a general theory of matrix elements (ME's) of the unitary irreducible representations (UIR’s) of
linear semisimple Lie groups and of reductive Lie groups. This theory connects together the following
things, (1) MEUIR’s of all the representation series of a noncompact Lie group, (2) MEUIR’s of compact
and noncompact forms of the same complex Lie group. The theory presented is based on the results of the
theory of the principal nonunitary series representations and on a theorem which states that ME’s of the
principal nonunitary series representations are entire analytic functions of continuous representation
parameters. The principle of analytic continuation of Clebsch-Gordan coefficients (CGC’s) of finite
dimensional representations to CGC’s of the tensor product of a finite and an infinite dimensional
representation and to CGC’s of the tensor product of two infinite dimensional representations is proved.
ME’s for any UIR of the group U(n) and of the group U(n,1) are obtained. The explicit expression for
all CGC's summed over the multiplicity of the irreducible representation in the tensor product

decomposition is derived.

I. INTRODUCTION

The representations of some semisimple and reductive
Lie groups have become of increased importance in physics.
The compact groups U(n) and SO(n) are extensively used in
the elementary particle physics' and in the nuclear spectros-
copy.” Among the applications of the SO, (n,1) representa-
tions there are the dynamical properties of the hydrogen
atom’ and the quantum field theory.* The U(n,1) representa-
tions are applied to the N-dimensional harmonic oscillator
and to the hadron spectroscopy.’ Fom the point of view of
physicists he most important aspects of the representation
theory are MEUIRs and CGCs. MEUIRs and CGCs for
compact and noncompact Lie groups, as well as for different
representation series (principal unitary, supplementary uni-
tary, discrete) of the same noncompact group, were usually
studied separately. But there exist close relations among
them. Such relations were searched after the explicit form of
MEUIRs and CGCs had been found. There are two main
results in the paper. Firstly, the general theory of MEs of
irreducible representations (unitary and nonunitary) for
semisimple Lie groups is given. This theory connects (1)
MEUIRs of all the representation series of a noncompact
semisimple Lie group, (2) MEUIRs of compact and non-
compact forms of the same complex semisimple Lie group.
According to this theory one does not need to derive
MEUIRSs of each representation series separately. This the-
ory gives unified approach to MEUIRs of all the series.
Moreover, MEUIRSs of any series may be easily obtained
provided MEUIRSs of some continuous series are known. We
show how this theory does work considering the groups
U(n,1), U(n), SO, (n,1), SO(n). Our approach is based on the
theory of the principal nonunitary series representations.

The principal nonunitary series representations will be
called the elementary representations.® This series contains
the principal unitary series representations. Moreover, the
elmentary representations are obtained by ‘““analytic con-
tinuation” of the principal unitary series.
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The elementary representations of semisimple Lie
groups were studied in the papers by Harish-Chandra. The
list of these papers as well as their account can be found in
Ref. 7. It was proved that any completely (or infinitesimally)
irreducible representation of a linear semisimple Lie group is
asubquotient of some elementary representation. In particu-
lar, the elementary representations contain finite dimension-
al irreducible representations. Therefore, we obtain MEs of
any irreducible representation as MEs of some elementary
representation.

This paper proves the theorem which states that MEs of
elementary representations are entire analytic functions of
continuous representation parameters. This theorem allows
one to obtain MEs of any representation series by means of
analytic continuation of MEs of some nondegenerate repre-
sentation series.

Most of unitarizable irreducible representations enter
the elementary representations not being unitarized. There-
fore, to find MEUIRSs from MEs of the elementary represen-
tations, one has to change the basis. The explicit form of the
infinitesimal operators in the initial basis and in the new one
can be used to obtain the transition matrix.

MEUIRSs possess numerous symmetries which are of
great importance for applications. Some symmetries are de-
scribed by means of the so called intertwining operators of
elementary representations. These symmetries lead to some
relations for the special functions. There exists a one-to-one
correspondence between the intertwining operators and the
Weyl group elements. That is why the Weyl group as well as
the correspondence mentioned are considered.

The theory of MEUIRs and MEs of the elementary re-
presentations allows one to apply the procedure of analytic
continuation to study CGCs of semisimple Lie groups. It
gives a possibility to continue analytically CGCs of finite
dimensional representations to CGCs of the tensor product
of a finite and an infinite dimensional representations or of
the tensor product of infinite dimensional representations.
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The tensor product of a finite and an infinite dimensional
representations is of increased interest both in mathematics
and physics.* The Wigner—Eckart theorem for noncompact
semisimple groups’® deals with this tensor product. Segal
considers that a finite mass spectrum can be obtained by
decomposing the tensor product of a finite and an infinite
dimensional representations of the group SO, (3,2) (cf. In-
troduction in Ref. 8).

The information on the tensor product of infinite di-
mensional representations [except for the groups SO(2,1)
and SO(3,1)] is rather poor.'° In particular, the problem of
the multiplicity of irreducible representation in this tensor
product is not yet solved. Therefore, we don’t know whether
analytic continuation of CGCs of finite dimensional repre-
sentations gives all CGCs for the tensor product of infinite
dimensional representations. We hope that the procedure of
analytic continuation of CGCs of finite dimensional repre-
sentations will make it possible to obtain an estimate for the
multiplicity of irreducible representation in the tensor prod-
uct of infinite dimensional representations.

Our theory of MEUIRs and CGCs uses the theory of
the principal nonunitary series representations. These repre-
sentations are induced by irreducible representations of the
minimal parabolic subgroup (for the definitions see Ref. 7).
Irreducible representations of other parabolic subgroups in-
duce the degenerate nonunitary series representations. The
theory of MEs and CGCs of the corresponding degenerate
unitary series representations can be constructed in the same
way.

The second main result in the paper is the derivation of
all MEs of all UIRs of the groups U(n,1) and U(n). In Ref. 11
the integral form of MEUIRSs of U(n) and of MEs of the
principal unitary series of U(#,1) was obtained. We obtain
the explicit form of MEUIRSs of U(x) and of U(n,1) with the
help of our general theory.

MEUIRSs of U(n) allow us to obtain CGCs of this group
summed over the multiplicity of the irreducible representa-
tion in the tensor product decomposition. If this multiplicity
is 1 we have the explicit expression of CGCs. In this way one
obtains some CGCs of U(n) not yet known. "

We also give the relations between MEUIRs of different
representation series of SO, (n,1).

Il. REPRESENTATIONS OF THE PRINCIPAL
NONUNITARY SERIES AND THEIR MATRIX
ELEMENTS

In this section we give necessary notions from the the-
ory of semisimple (and reductive) Lie groups and prove that
ME:; of the principal nonunitary series representations are
entire functions.

Let G be a connected linear semisimple or reductive Lie
group, and g its Lie algebra. Let K be a maximal compact
subgroup of G, and j a subalgebra of g which corresponds to
K. If B (-,-) is the Killing—~Cartan form on g, then let p be the
orthogonal completion to | in g with respect to B (,-). Then
g =i+ p. If @is the Cartan involution on g, then the form

1625 J. Math. Phys., Vol. 20, No. 8, August 1979

(xy) = — B(x,0y), is a positive definite scalar product on g.
Let a, be a maximal commutative subalgebra in p. The di-
mension of g, is called the split rank of g. We denote by m the
centralizer of a, in K. If a. is a Cartan subalgebra of m, then
a = a. + a_is a Cartan subalgebra of g. Consider a set of
operators adH, Hea,, which act in the space g. If g is
equipped with a scalar product (x,y), then the operators adH
are a commutative family of self-adjoint operators. There-
fore, g is decomposed into a direct sum of eigensubspaces of
adH, g = g, + 2,g;- The sum is over nonzero linear forms
on a., and g, corresponds to the eigenvalue 0. The forms A are
called the restricted roots of (g,a.). The roots 4 are divided
into positive (4 > 0) and negative (4 <0) ones. If n

= Z,. 08, then nis a maximal nilpotent subalgebraing. Let
N, A. be the analytic subgroups in G with the Lie algebras n,
a., respectively. Then the Iwasawa decomposition

G = A, NK is valid, and each element g, gG, is uniquely
decomposed into a product g = h.nk, h.€A., neN, kek. The
map (4.,n,k ) —>h.nk is an analytic diffeomorphism from the
manifold 4, XN XK onto G.

Let Mbethecentralizer of 4, in Kand M * the normaliz-
erof A, in K. Then the quotient M */M is a finite group which
is called the Weyl group W of the pair (g,a.). The action of
the elements of W upon linear forms A, A€(a.)*, and upon
finite dimensional representations & of M is defined. Name-
ly, if weWis a coset m*M, m*eM *, then

wWAYH ) =A (m*'Hm*), Hea,, 0
(wd)(m) = S(m*'mm*), meM. 2)

Moreover, wA and wd do not depend on the choice of the
representative m* in m*M.

Let 6 be a finite dimensional representation of M in the
space H, and let A be a complex linear form on a.. Next, let
L %(K,Hj) be a Hilbert space of all measurable functions f:
K—Hj such that

fK 1FON%dk <0, f(mk) = 8m)f k), 3

where meM, keK, and dK is the invariant measure on X.
Then the operators 7 4(g),

5.4 @) (k) = exp{A (logh.)] f(k, ),

where kg = h.nk,, h.ed., neN, and k, €K, define a represen-
tation of G. The set of all representations 7 4(g) is called the
principal nonunitary series. This series is the analytic con-
tinuation of the principal unitary series representations.
Thus, the principal unitary series is contained in the princi-
pal nonunitary series. The representation 7 4 will be called
the elementary representation. It is shown in Ref. 13 that
every completely (or infinitesimally) irreducible representa-
tion of G which is decomposable into a direct sum of unitary
irreducible representations of K with a finite multiplicity is
infinitesimally equivalent to a subquotient of some elemen-
tary representation. For the definitions of the infinitesimal
equivalence and the infinitesimal irreducibility see Ref. 7.

Since the action of the elements w of Wupon § and A is
defined the action of w in the set of elementary representa-
tions is also defined, namely, w7y s = 7,504 — p) 4 p-
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The condition (3) shows that the space L 3(K,H ) may
be identified with the subspace of the space L *(K ). The space
L 3(K,Hj) is decomposed into orthogonal sum of subspaces
in which 7 , realizes irreducible representations of K. The
direct sum of these subspaces is denoted by dL 3(K,H). The
representation 75 , of g in dL 3(K,H,) will be denoted by
dms 4.

Every function from dL 3(K,Hy) is infinitely differentia-
ble. This is a consequence of the analyticity of functions of
dL 3(K,Hy) with respect to 7, , (see Corollary 4.4. 5.17 in
Ref. 7).

Let / be the split rank of G. The form A on a, is defined
by / numbers if some basis is chosen in a.. We denote these
numbers by ¢,,¢s,...,¢;. Thus 7y s =5, . .. Let Msbe the
set of the representations 7 , of G with fixed 4.

Theorem 1: Matrix elements of the representations
Tsepen..c, from Mg in a fixed basis of dL 3(K,H,) are entire
analytic functions of the parameters ¢,,c,,...,c,.

Proof: Let f,(k } and f,(k ) be two basis elements in
dL %(K,H ). Consider ME

f(ﬁ(k )explA (logh.)] f(k,) dk

_ J(ﬁ(k Mo en o @V>0)) dk,

where g is a fixed element of G, and (.,-) is a scalar product in
Hy, The function ( f,(k ),exp[A (logh.)] f3(k,)) is an entire
analytic function of the parameters ¢,,c5,...,c;. From the dif-
ferentiability of the integral in a parameter which the inte-
gral depends on, from the infinite differentiability of func-
tions of dL %(K,H ) and from the differentiability of the
representation 75, . . (for the definition of the latter see
Ref. 7) it follows that the ME is an entire function.

I1l. REPRESENTATIONS OF THE PRINCIPAL
NONUNITARY SERIES AND FINITE
DIMENSIONAL REPRESENTATIONS

It was mentioned in Sec. II that every completely irre-
ducible representation of G is infinitesimally equivalent to a
subquotient of some elementary representation. Hence, ev-
ery finite dimensional representation of G is contained in
some elementary representation. Let A be a weight of the
finite dimensional representation @ of G with respect to the
Cartan subalgebraa. Let 4 (o) be a restriction of the weight A
onto a,. A (w) will be called the restricted weight. Let A (@)
denote the lowest restricted weight of w. Let w; denote a
finite dimensional representation of G which is an extension
of the fixed representation § of M. In other words wy is a
finite dimensional representation of G for which the space of
all weight vectors belonging to all the weights A with
A(ws) = A (wg), isinvariant with respect to M and is a space
of the representation 6. The following theorem is proved in
Ref. 14.

Theorem 2: The elementary representation 75 4 of G
may contain only one finite dimensional subrepresentation,
this being with a multiplicity not exceeding one. Moreover,
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7,4 May contain as a finite dimensional subrepresentation

only the representation ws (an extension of the representa-

tion 6 of M'). The representation 7, , contains w, as a subre-
presentation if and only if A (wg) = A.

Let 6 be a fixed unitary irreducible representation of M,
and let N be a set of positive integers. A set of Aca* (a* isa
dual of a,) such that A = A (w;) is a lattice in a* which
contains an infinite numbers of points. This lattice is in a
one-to-one correspondence with the lattice N’ (/ is the split
rank of G') from which a finite set of points is thrown out.

Theorems 1 and 2 imply the following corollary.

Corollary: Matrix elements of a finite dimensional re-
presentation of G in an appropriate basis are the matrix ele-
ments of a corresponding elementary representation of G
(this correspondence is given by Theorem 2). Matrix ele-
ments of elementary representations of G are an analytic
continuation of matrix elements of its finite dimensional re-
presentations in an appropriate basis.

This analytic continuation is not unique. Therefore,
when using the analytic continuation one must be certain
that it is the necessary one. The guarantee is achieved by
means of some additional condition. Fulfillment of the
relations

d
o g(t) =1g(t) 4

for noncompact one-parameter subgroups g(¢ ) with infini-
tesimal generators I serves as a sufficient condition for ana-
lytic continuation to be correct. For MEs the relations (4)
are of the form

4 (aigt)lm> = 3 <altln’> <olg(o) m. )

Hence, the relations (5) demand knowledge of the MEs of
the operators I. If the basis elements in (5) belong to
dL }(K,Hy), then the sum in (5) is finite (see Sec. XI below).

According to Theorem 1 MEs of, for example, the prin-
ciple unitary series representations, define MEs of all ele-
mentary representations. Since elementary representations
contain all completely irreducible representations, MEs of
the principal unitary series define MEs of all other series of
representations (in particular, of finite dimensional
representations).

IV. MATRIX ELEMENTS AND INTERTWINING
OPERATORS

MEs of elementary representations in an orthogonal ba-
sisof L 2(K,H ;) give MEs of the representations of the princi-
pal unitary series in unitarized form. This is not true for the
representations of the complementary and the discrete series
because these are not unitary in the space L 5(K,H,) with
defined scalar product. To obtain unitarized MEs it is neces-
sary to introduce a new scalar product and to choose an
orthonormal basis in a new Hilbert space. A transition to
new scalar product can be realized by means of a self-adjoint
operator A. Such operators are related to intertwining opera-
tors of elementary representations (see Lemma 22 and Pro-
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position 25 in Ref. 15). If the explicit form of the operator 4
is available, it is possible to transform MEs of representa-
tions of the complementary, discrete, or other unitary series
in orthonormal basis of the space L 5(K,Hs) into MEs which
are unitarized.

Besides that, intertwining operators define the symme-
try relations for MEs of elementary and unitary representa-
tions as functions of the complex parameters c,,¢,,...,c; of
representations. These relations lead to some relations for
special functions associated with the representations under
consideration.

The explicit integral form for intertwining operators is
introduced in Ref. 16. To apply the intertwining operators to
ME:s of representations it is necessary to have the intertwin-
ing operators in matrix form, Therefore, we give the follow-
ing deﬁnition of intertwining operator The linear operator
11 = 1152, from dL §(K,H;) into dL 3(K,Hy) such that

Hdn'é‘,, =dmg 411 (6)

is called the intertwining operator for the representations
Ty 4 and Ty 4.

The representations 75 , and 75, . can possess a nonze-
ro intertwining operator if they have common irreducible
representations. The latter holds if 7, , and 7 4. have the
same infinitesimal character.'” In turn, it is possible iff the
representation 77 _, - is obtained from the representation 75 ,
by the action of some element of the Weyl group W, of the
complexification [G ]¢ of G. Intertwining operators which
correspond to elements of the Weyl group W of (g,a.) are
analytic functions" of the complex parameters c,,c,,...,¢;.
The explicit matrix form of all the intertwining operators is
found for all elementary representations'*?° of the groups
U(n,1) and SO, (n,1) and will be given below.

According to the corollary in Sec. III MEs of the ele-
mentary representations lead to MEs of finite dimensional
representations and, vice versa, MEs of finite dimensional
representations can be analytically continued to MEs of ele-
mentary representations. For this reason sometimes it is nec-
essary to have MEs of finite dimensional representations of
G in an orthonormal basis of the space L 3(K,H ) if MEs of
unitary finite dimensional representations of the compact
form G, of the complexification {G ] € of G is known, and vice
versa. The problem is to find explicitly the relation between
these MEs. As it is known there is a one-to-one correspon-
dence between the finite dimensional representations of G
and G, . This correspondence is realized as follows, MEs of
finite dimensional representations of G and G, are real ana-
lytic functions of group parameters. Parameters of the group
G, are continued analytically in the set of parameters of the
group [G'] ¢ to parameters of the group G. If such continu-
ation is done for MEs of a finite dimensional representation
of G,, then we obtain the corresponding MEs of a finite di-
mensional representation of G. This correspondence is
reversible.

Suppose we have ME:s of a finite dimensional represen-
tation of G in an orthonormal basis of L 3(K,H). Continue
these MEs in group parameters to MEs of a representation of
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G- The obtained representation matrices are not unitary.
Unitarization of these matrices is achieved by a transition to
a new basis. This transition is given by the operator A which
is related to intertwining operator in the same way as in the
case of the operator A which unitarizes the unitarizable re-
presentation of G. The explicit form of the operator 4 allows
us to obtain unitarized MEs of finite dimensional representa-
tions of G, and, vice versa, to transfer a basis in which the
representation of G, is unitary, into an orthonormal basis of
the subspace of finite dimensional representation of the
space L }(K,Hj).

The operator A can be found as follows. Either it can be
calculated with the help of Lemma 22 and Proposition 25 of
Ref. 15 [to do this one has to know the explicit form of the
operator (9.6) in Ref. 15], or the operator 4 can be found by
means of the fact that it realizes a unitarization of the repre-
sentation both in global and infinitesimal form. In some
cases all MEs of infinitesimal operators of elementary and
unitary representations can be calculated. They allow one to
write down a system of equations for MEs of the operator 4.
If this system is solved we can apply the operator 4 to global
representations of G. In such way the operators A for the
groups U(n,1) and SOy(n,1) have been found explicitly. They
are given below.

V. REPRESENTATIONS OF THE GROUP U(n,1)

We intend to apply the theory of MEs presented above
to representations of the group U(n,1). For this purpose here
we shall describe elementary and irreducible representations
of U(n,1).

For O(n,1), K=U(n)  U(1), M=U(n — 1) @ U(1),

A. = expa., where a. is a one-dimensional subalgebra of the
Lie algebra u(n,1) [Lie algebra of U(n,1)] with the basis ele-
mente=FE, ., +E, ., Hereand in what follows E;is
an (n + 1)X(n + 1) matrix with elements Edps=6 ,ﬁﬁ
Thus the elementary representation of U(n, 1) is defined by
the unitary irreducible representation § of U(n — 1) ® U
and the linear form A on a.. The representation & is fixed by
n — lintegers my,m,,...,m, _suchthatm >m,>->m, _,
and by the integer m, which deﬁnes a character of U(1). We
shall also use the integers /,,/,,...,/, _  wherel, =m, — i — 1.
The linear form A is given by the number A = A (¢). Weshall
use the numbers ¢, = — 4{(4 — m, + 2) and

= 3(A + m, — 2n — 2) instead of the numbers m, and A.
Hence, the elementary representation is defined by the num-
bers / I,12, Ly _ 1se1s€5. Therefore, we shall denote 75 , by
(bl 501,60 =m(lic 5).

There exists only one nonidentical element w of the
Weyl group W of the pair (U(#,1),a.), and
wm(lic,,¢;) = w(l:cy,c,).

The representation 7(I:c,,c,) of U(n, 1) decomposes into
those and only those irreducible representations (with unit
multiplicity) of U(n), whose labels My, My,....M
(m,,>m,, >->m,,) satisfy the condition

nn

My ZM2M,, 2> 3m, | >m, >m,,. @)

Using this fact we choose a basis in the space of the represen-
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tation 7(l;c,,c,) in such a way that it coincides with the union
of orthonormal bases of subspaces of irreducible representa-
tions of the subgroup U(n). Bases of these subspaces are cho-
sen to be the Gel'fand-Zetlin bases, i.e., the bases in which
the infinitesimal operators of U(#n) act according to the well-
known Gel’fand-Zetlin formulas. We shall call this basis of
the space of the representation 7(l;c,,c,) the canonical basis.
The elements of the canonical basis will be labelled by the
well-known Gel’fand—Zetlin schemes a and will be written
as |m,, @), where m, = (m,,,m,,,...,m,,), and a consists of
rows of integers labelling the irreducible representations of
the subgroups U(n — 1), U(n — 2),...,U(1). It is shown in
Ref. 18 that the canonical basis can be chosen in such a way
that the infinitesimal operators E, , | ,E, . | ,E, , 1, of
the representation 7(l;c,,c,) are given by the formulas

En,n + 1 |mn’a>

= 3 U, — codmua)m, ad, ®)

5=

En + l,n|mn’a>
== 3 (-, — Dodm; @)|m ad, (9
s=1

E, ; tni1lmpad
n—1 n
= +e+ Y L= lL,+n+Dimye), (10

i=1 j=1
where

n—1
ws(l’mma) = H (lj,n -1 lsn - l)l/z(lsn - lj)l/2

j=1

n
X II W =L+ DU = 1172 |, (A1)
o
l;;= m; — i,and m,"* means a set of the numbers m,,, where
m,, + 1 is substituted instead of m,, .

The representation 7(l;c,,c,) is irreducible if and only if
¢, and ¢, arenotintegers or if ¢, and ¢, coincide with some of
the numbers /,,/,,...,/,, _ ;. The representations 7(l;c,,c,) for
which ¢, = ¢, and only those belong to the principal unitary
series. The structure (composition series) of reducible ele-
mentary representationsis given in Ref. 21. In particular, the
elementary representation 7(l;c,,c,) contains a finite dimen-
sional subrepresentation if and only if ¢, and ¢, are integers
such thate¢, >/, and ¢, </, _ ;. This finite dimensional repre-
sentation has as its highest weight m, ,, | ,m,,  1,.--

My ins s Where ml,n 1= ¢ + l;mi,n+ 1= lif 1 i’
i=23,..,mm, ,, =c,+n+ 1. Wedenote this repre-
sentation by {2 (¢,,},¢,). Completely (or infinitesimally) irre-
ducible representation of U(#,1) is uniquely defined (up to
infinitesimal equivalence) by its infinitesimal character and
by the set of its irreducible representations of U(n) (cf. Theo-
rem 9.2 in Ref. 22). Infinitesimal character is given by the
numbers (I;¢,,¢,), which define some elementary representa-
tion of U(n,1) with the same infinitesimal character. Besides
the elementary irreducible and finite dimensional represen-
tations the group U(n,1) has the following classes of irredu-
cible representations®:

(a) The representations D ?? (;c,,c,) and D %7 (licy,c,),
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I<p<g<n,c, > c,, where ¢, and ¢, are integers, such that
L _>ei>ll, 1>c>1 (weputly, = 0,/, = — ).
D? (lic,,c,) and D#4 (lic,,c;) contain with unit multiplicity
those and only those irreducible represenations of U(r) for
which the condition (7) and the conditions /,,<c,/,,<c, or
lpw> 14l ,, >y, respectively, take place.

(b) The representations D?4 (;c,,c,) and D 2 (Iicpue,),
1<p<n — 1,1<q<n, where ¢, =/, and ¢, is an integer, such
that/, >c,>1, D7 (lic,,c,) and D 74 (I;c,,c,) contain with
unit multiplicity those and only those irreducible representa-
tions of U(n) for which the condition (7) and the condition
l;n<cy o1 1, > c,, respectively, take place,

(c) The representations D‘_ (I;c,,¢,) and D*_ (Iic,,c,),
1<i<n, wherec, = ¢, = cisanintegersuchthat/, _ ,>c¢> /.
D', (Lc,,c,) and D’_(l;c;,c,) contain with unit multiplicity
those and only those irreducible representations of U(rn) for
which the condition (7) and the condition /,,<c or /,, > c,
respectively, take place.

Among these representations there are equivalent ones.

We shall say that the sequene of integers a,,a,,...,a, is
contracted ifa,=a, |, — 1, i =23,k

The following irreducible representations are infinitesi-
mally equivalent to the unitary representations:

(a) the representations 7(l;c,,c,), if

(1) ¢, and ¢, are complex numbers such that
¢, = €,,¢,70,

(2) ¢, and ¢, arereal numbers for which there exist such
leand I (ks =1,2,..n — Dthat |l, — ¢, < L], — ;) <1,
and the sequence /,,/, . 1,....[, if ¢, > ¢,, or the sequence
Iyl | 1,0l if € < ¢y, is contracted,

(3) ¢, and ¢, are real numbers for which there exists an
integer msuchthat m>c¢, >m—1,m>c, >m—1;

(b) the representations D ¥, (Iic,,c,), if

Mi=j,

(2) the sequence ¢,/,/; | 1,...,J; _, is contracted;

(c) the representations D ¥_(l;c,,c,), if

i=j,

(2) the sequence /,/; | ,..../; ,,c, is contracted;

(d) the representations D I (Leyhey), if

(1)i <jand thesequence /,/; , ,,...,.J; ¢, s contracted,

(2)i>j and the sequence lj,lj + 1--l; 18 contracted;

(e) the representations D 7_(lic,,c,), if

(1) i <j and the sequence /,/; , ,...,/; s contracted,

(2) i>/ and the sequence c¢,,/,/; . y,...,]; is contracted;

(f)all the representations D', (I;c,,c;)and D'_ (Lic,c,).

All these representations are unitary if the orthonormal
bases in their spaces are chosen in such a way that MEs of
infinitesimal operators are given by analytic continuation of
the Gel’fand-Zetlin MEs of the infinitesimal operators of
finite dimensional representations of the group U(#,1) [or of
the group U(n + 1)], i.e., if the infinitesimal operator
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E, . .+ isgivenby formula (10) and the infinitesimal op-
eratorsE,, . ,E, , ,, are given by
En,n + llmn’a> = Z [ - (lsn - Cl)(lsn - c}.’)]]/2

i=1

Xolm,a)|m; a), (12)

En + 1.nlmn’a> = 2 [ - (lsn - Cl - 1)(lsn c2 - 1)]”2

i=1
n @) m,%ad, (13)

Xol,m
where , is defined by (11). The representations of (al) be-
long to the principal unitary series. The represenations of
(a2) and of (a3) form the complementary series. The repre-
sentations of (b1) and of (c1) are the discrete series of square
integrable representations.

V1. OPERATORS OF THE TRANSITION TO
UNITARY REPRESENTATIONS

Since irreducible representations of U(n) are contained
in elementary representations of U(n,1) with zero or unit
multiplicity, it is seen from Shur’s lemma and definition (6)

) . Ley,
of an intertwining operator /7> that

<malllpemy,a’> =8, ,8uqhm, (14)

V,ec

Thus, an intertwining operator of U(n,1) is defined by the
numbers 4,,, . All intertwining operators of the group U(#,1)
are found in Ref. 18. In this paper we consider those which
correspond to the nonidentical element w of the Weyl group
W. If the elementary representation 7(l;c,,c,) is irreducible
then for I7 "c“cf

Ly
A, =za,( Lees)/a,, (Liexey), (15)

where a,, (I;c;,c;) is given as

l,—1

_ L a—1
a,, (Iicy,c) = H H (a -¢) [ (@—c). (16)
a=1,,

r=1o={+

Ley,c,

Let us define the numbers /l,,," for IT " : when the represen-
tation 7(l;c,,c,) is reducible.

Fixlandc, + ¢, Putg =c, +c,. Then4,, and /1}2"?
are functions of ¢, . Moreover, they are analytlc in the do-
main which consists of points of irreducibility of the repre-
sentation 7(l;c,,c,) and can be meromorphically continued

rrlcpca

to the whole of the complex plane. Let /7" be the continu-
ation of 1T :;2 For fixed 1and ¢, + c, the function /7 ez of

variable ¢, is regular [and is an intertwining operator for
m(l;c,,c,) and 7(l;c,,¢,)] at all points of the complex plane
except integral points for which one of the following condi-
tions is fulfilled:

@l_;>c >l[;lj__ 1 >C2>lj;i =12,..,n—1;
J=12,..,n i (weputly = 0,l, = — o0);

ML >c>e>lLi=12,.,n

e, =1, i=12,..,n— 1,

@Dey=1, i=12,.,n
Jj=12,....n—1.

At all these points except for the points ¢, , for which

_1>Cy;

- 1, l]'_]>c]>ljn
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Flee,

L, _1>c¢,>1,j=12,.,n— 1, thefunction /T "’ has simple
poles. At integral points ¢, forwhich [, >¢,>1,
j=12,..,n—1,it has poles of the second order. At every

point ¢, = ¢$, in which /7

Lepey
Leyey

has a simple pole (a pole of
second order, respectively), the residue of /1 [T <72 of the first

ey,
(second, respectively) order at ¢; = ¢ is an intertwining op-
erator of 7(l; cl,cz) and m(1;¢5,¢9), ¢ = g — ¢}. Denote this

0
Ll el

residue by /7 ", h+<% Ttis clear that the numbers A, for IT
are defined to be residues at ¢, = cl of the numbers A, for

1T}, Some numbers A,,, for 17

Leye,y”

o tare equal to 0. Thls

o

means that the operator [I . C‘. )i vamshes on some subspace.
Thus, we have defined 1ntertw1n1ng operators for all pairs
7(l;c,,c,) and 7(lic,,c;). We denote any of them by /7 :E;ﬁj
According to Proposition 3 in Ref. 18 the closure of the
range of the noninvertible operator /7 oreris invariant under
the representation 7(l;c,,c,).

Above it was pointed out that unitarizable irreducible
representation is unitary if an orthonormal basis is chosen to
be such that the infinitesimal operators £, ,, , ;and E, , |,
are given in it by the relations (12) and (13). This orthonor-
mal basis will be called the standard basis. Its elements will
be denoted as |m,a)..

Theorem 3: Let 1T "C"Ej be an intertwining operator for

Leye

7(lic,,c,) and 7(lic,,¢,), and let H be the closure of the range
of I115"* [H coincides with the space of the representation

Ly,
7(l;c,cy) if Iy Lener ¢ is invertible]. If the restriction of w(L;c,,c,)
onto H is unitarizable or finite dimensional representation,
then the transition operator 4 which transforms the canoni-
cal basis |m,,,a) to the standard basis {m, ,a>, of H is given
by

= A |y = (V — Dm0

XV | m ey | m e,

wherea= — 2;_ /.

The proof of theorem consists in direct evaluation of
MEs of the operator 4 using the relations (8), (9), (12), and
(13). We introduce the notation

=V = D (m | T 7502 myya) ' an
To obtain MEs of unitary representations from ME of the
elementary representations we need only the ratios o Mo,
Really, if (m,,a| T |m/,a "> isa ME of some operator T of the
representation 7(l;c,,¢;) and (m,,a|T |m},a">,is the same
ME in the standard basis, then

Ley,c,
mpa|T|mya >, = —=—{(ma|T|m,a'>. (18)
Theorem 3 implies that
Lol (r(cl+1—1:,.>r(1;,,~c2))“2 19)
ewes SN T ey + 1 =L, —c)/)

m ”

The ratios I" ( — z,)/I" ( — z,) with nonnegative integers z,
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and z, can appear in (19). In this case I" ( — z,)/T" ( — z,) The relations (18) and (19) will be used to obtain MEs of
must be replaced by (— 1y * I (1 + 2,)/I' (1 + z,). | unitary representations of U(n,1).

VIl. MATRIX ELEMENTS OF THE ELEMENTARY REPRESENTATIONS OF U(n, 1)

Any element g of U(n,1) can be decomposed uniquely as

g = han + I(¢n t l)bn 4 1(77);;7 (20)
wherea, , (@, , ) and b, , (1) are the matrices
1 0 1
0
a, . l(¢n “+ l) - 0 ) b" n I(’Y]) = 1 y (21)
1 0 0 coshy  sinhy
0 e ¥y sinhy  coshy
h is the most general element of the subgroup U(x), and 4 is a special element of U(n). Namely, # is defined as a product
F=a@) ][ a0 A¢n Je,_ 6, ) (22)
r=20
wherec, _ (6, . ,) is real matrix of the rotation in the plane of (n — » — 1)thand (n — r)threal coordindates, 8, ,bethe angle
of rotation. In the relations (20)—(22)
O0<p;<2m, 1<i<n+1; 0<O< %, 2g<n; 0Ky < . (23)

The parametrization (20)-(23) can be obtained if one carries out reasoning analogous to that of Ref. 23.

According to the decomposition (20) we can represent U(n,1) as U(n,1) = U(n)X,, | ,, where X, , , is a corresponding
coset space. The decomposition U(n,1) = U(n)X,, , | shows a close relation of the parameters {@,0,7} with the coordinate
system on “‘hypersphere” Sin the complex space C" * !, for which the group U(n, 1) is transitive.> It follows from this relation
that an invariant measure on U(n,1) is

277 !

! [} n n+ 1
dg = —=dhdu(x, . )= 2—”—+1 [] sin® 6, cost, sinh®  'ncoshydy [] de, dh, 24)
T k=2

r=1
where dh is an invariant measure on U(#) such that (,,dh = 1.

To find MEs of elementary representations of U(#,1) it is enough to find MEs of the operators T [a,, | (¢, , )] and
T[b, , ,(n)], which correspond to one-parameter subgroupsa, , (¢, . ,)and b, . ,(77), and MEs of representations of U(n).
The latter will be found in Sec. IX. Now we begin to derive MEs of T (a,, | (¢, , ;)] and T (b, , ,(17)]. Firstly we shall
consider the irreducible elementary representations 7(l;c,,c,), for which ¢, and ¢, are not integers. Sometimes we shall

consider the new basis |m,, @)’ instead of the basis |m,,a>, namely,
‘mn?a>, = A’ (mn’a)|mn’a>’ (25)
n 7 1/2
/1 (mn’a) = [H (ljn - li R 1)'H (11-7 [ ljn)' H F(ljn - CZ) H F(Cl - ljn + 1) H (lin - ljrl)_l/2
i>j inj j=1 j=1 i<j
LA 172 €0y
< [n G v~ L= DL = Lo T ok = e Db, (26)
k=2 Lli>j i< i<j

where ,u‘,,f “'is defined by (17). This transformation is analogous to the transformation (22) of Ref. 25. Instead of (8) and (9) we
now have

< II\\\(I— - [Sn)n' x(l',n -1 lsn - 1)(C - lsn) s ,
E,, . lmya> = Z Jas\ IH 1 J<11 = 1 l 1 1 ImFay, @n
s =1 ; lj<s( jin T)I\]n) (jl> s( .s‘nl_ }ng(l 1)
a1 Y B j — tin— sn— €2 — . ,
E” . l.n‘mn’a>l —_ z j>s( sn j—1 Jzs\"sn g8 1 2 |m,, ’\,(Z> . (28)

s=1 Hj<3(ljn - lxn)nj,\x(l_vn - ljn)

Infinitesimal operators of U(n) in the basis |m,, @)’ are given by the relations (7)—(30) of Ref. 25.

For convenience we shall denote the space L 3(K,H ) by H. According to Corollary 4.4.5.17 in Ref. 7 every vector of dH is
an analytic vector of the representation 7(l;c,,c,). If H “ is a set of analytic vectors of H, then H” =u, _H, where H{ is
defined as follows.? Let H = be a space of infinitely differentiable vectors of the representation 7(l;c,,c,). A countable family of
the seminorms p, ,
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pulf) = sup |lm(X, XX, V|

Pejis
where d is a dimension of U(n,1) and X, are basis elements of u(n,1), is constructed in H *. H {is a set of functions from H ~,
for which

oo s™
2 me(f)< ®©

m=20
forany s, 0 <s < x.
If |m,, @) is a fixed element of the canonical basis in H, then we have |m,,a>eH ¢ for some x, x > 0.

Lemma: If some element |m,, ,a) of the canonical basis of the space H of irreducible elementary representation 7(l;c,,c,)
belongs to H ¢, then all elements of this basis belong to H % .

Proof: The representation dm(l;c,,c,) of the algebra u(n,1) define in an obvious way the representation of the Lie algebra
[u(n,1)]°, the complexification of u(r,1). Let |my,a’»eH ¢ If ¥ is a subspace of H, in which UIR of U(n) is realized, then
according to results of Ref. 27 the universal enveloping algebra £ of [u(r,1)] € contains an element which transforms |m2,a">
into V. Let @ and b be two elements of V. According to the Bernside theorem on irreducible matrix algebras,? there exists in £2
an element which transforms a into b. Therefore, for any element |m,,a"> of the canonical basis of H there exists in {2 an
element which transforms |m%,a®> into |m/,a’>. According to Proposition 2.1 in Ref. 26 every operator X of the representa-
tion 7(l;c,,c,) of the algebra u(n,1) transforms H ¢ into H ¢. 1t is obvious that this fact takes place for any element from 2. But

12 contains elements which transfer |m2,a®) into any element of the canonical basis, so Lemma is proved.

Let us consider the complexification [U(n,1)] € of the group U(n,1). According to Propositions 2.2 and 2.3 in Ref. 26
every representation 7(l;c,,c,) of U(n,1) can be continued to the local representation of the group [U(#,1)]. Notice that
statements of Ref. 26 are formulated for unitary representations. However, they can be easily extended to a set of nonunitary
representations which contains all elementary representations.’

Let 7(I;c,,c,) be an elementary representation of U(n,1). UIR of U(n) will be called the admissible representation with
respect to w(l;c,,¢,), if it is contained in 7(l;c,c,). Highest weights of admissible representations will be called the admissible
highest weights.

Proposition: Let w(l;c,c,) be an elementary representation of U(n,1) for which none of the numbers ¢, and ¢, is integral.
Continue the representation 7(l;c,,c,) to a local representation of the group [U(n,1)]¢. There exists £,,1, > 0, such that for

|t | <t,,teC, the operator exp(tE,, ,, , ), which corresponds to the one parameter subgroup of [U(#,1)]¢, acts upon the ele-
ments |m,,a)" of the space of the representations 7(l;c,c,) as

exp(tE,, . Dm ad' = 4 (my,m)" "~ “|m}a. (29)

Here the summation is over all admissible highest weights m,, = (m1,,m;,,...,m,,) of U(n), for which m/, >m,,, i = 1,2,...,n;
k,=2!_\m,, k,=2!_,m/; the multiplier 4 (m),m,) is defined by

Ly —I)N n e, ~1,+1 Lw =L, — DV, _(,—1, — D)

Amim,) =] = £ Mgl 2 2 Rl - Dy (30)
i (o~ lj,n)! r=1 (e, =17, + 1)i<i(1f,n_ 1= lj'n - Hig/([;n - ljn)! i<j

If |¢| < £,,t€C, the operator exp(tE, | | ,) acts on the elements |m,, @)’ as

exp(iE, , , ) m,a) =3 B(m;my* " \myay. 31

Here the summation is over all the admissible highest weights m;, = (m{,,m?,,...,m/,) of U(n) for which m/,<m,,,i = 1,2,...,n,
and the multiplier B (m/,m,) is defined as
(s — lj—l - I, —c))

Lp— L,V IL_( 0 —1,— 1)
B(my.m,)=]] II 11 ( jin = 1) £ 1 maen—1;
iU =L =D O], —c)i (], — L ! L) P (PO A

). (32)

The proof is carried out in the same way as that of Theorem 1 in Ref. 25 and we omit it.

Let us remark that the operators exp(tE, , , ;) and exp(tE, + 1..) do not change a.

. Theorem 4: The operators T"“"*[a, , (p)] and T""[b, . ()] of the elementary representation 7(lc,,c,) of U(n,1),
which correspond to the one-parameter subgroups a,, +1(@)and b, . | (), in the canonical basis |m,,a> are given by

Lepen i —
T[a, , (@)lImpa) =e* %5 Mm o, (33)

where
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L (n+ D +2)

n_- 1
n+l:ZIi+cl+C2+ )
il

" (b, D) >
” /; — DY, — Ly — DI — T — L2
= Z [(H (Im - _/n)(l n ; l(/( ] J" )( =1 1) (l lj") (ll ljn) )

e Hj l([jn - 11 n 1)‘( jn l/ n 1) (ljn - l - 1)'( in ] — 1)'
(Coshn)]‘ A T & F(Cl . lm + l)r(l in T CZ) II:J’(I i — 1 — 1)‘(1 in lj,n _ ])'
me i Le, =10+ 0DCAL, —c,y) I, J([ "1
(U5~ 15— 1) 1f<,<1in T ey

x11

i<j (l i/’l’))‘(li.n -1 ]jlr; - 1)] i J({ in Jn)'
Here the first sum is over all admissible highest weights m_ of U(n) and the second sum is over the admissible highest weights
m: of U(n), for which m/,>max{m,,,m’ }, i =1,2,...,n. The operator T*"“[b, + 1(77)] can also be given by the formula

(sinbm)™ “"}|m:,,a>. (34)

l.ey,e

r-r :[ ” 4 1(77)] |mn’a>
L =L WL WGy = L= DI, — L — D2
— Z [(H (lm _ jn (1 ' t\/( in jin )(lm l 1) (lm lj 1)(1m lj 1) )
1< ni<j(ll'.n -1 jn - 1) (11 [ ljn - 1)!(1 - [_/’n)‘([ - ljn)!

, , e T 17+ 0rd, — . W= Ly = DMy — 10— 1)
X (coshp)'s KKk ] (e, =1+ DI, —c) M _(—1;)X i — Dy — 15— 1)
mei=a Doy =1+ DO —cy) W (0 — L= — 1, L, — 1)

n, _(dn—1, -y, -1 PR
x 2 ( 2 (sinh)s 4+~ imisa. (35)
I\j(l 1])))'

Here the first sum is the same as in (34) and the second sum is over the admissible highest weights m,’ of U(n) for which
m} <min{m,,,m}),{ = 1,2,...,n. Theratios I ( — z,)/I" ( — z,) with nonnegative integers z, and z, can appear in (34) and (35).
In this case I"( — z,)/I" ( — z,) must be replaced by ( — 1" * *I"(1 4+ z,)/I" (1 + z,).

Proof: Let m(l;c,,¢,) be an elementary representation, for which none of the numbers ¢, and ¢, is integral. Continue the
representation 7(l;c,,c,) of U(n,1) to the local representation of [U(n,1)]°. The element b () of U(n,1) can be represented

n 41
as
1 0 1 0 |
bn + 1(77) = 1 1 1
0 1 0 0 coshy 0 0 1 tanhy
tanhy 1 0 cosh™'n 0 1
=b.(mbo(mb-(7), (36)
or as
b, () =b.(mby '(mb.(n). 37

The elements b (1), b,(n7) and b.() belong to [U(x,1)]1¢ and do not belong to U(n,1). According to Proposition 2.2 and
Proposition 2.3 in Ref. 26, and Lemma proved above, there exists 4, 74 >0, such that

"“"“-*[b.m)] T [T (6. [m@ = T [b, . ()], (38
L (1T b g T Lo |m,, @ = T (b, , () ]|m, a (39)

for 7 < 7;,. Similarly, there exists 74, 7§ >0, such that relations (29)—(32) can be applied to the operators T"[b(n)] and
T . ()] if 7 <. Hence, the relations (29) and (31) can be applied to the decompositions (38) and (39) if
7 <o =min| 74,74 }. If we take into account the relations (25) and (26) this gives us (34) and (35) for 7 < 77, . Let us prove (34)

and (35) for 7>, . The relation (34) gives us MEs of the operator T"""*[b, , , (17)] at any 7 iff at 7 = 0 (34) gives the unit
operator and the relations

d ’ ’ a0 17 ” ” ” WCCy
i T b, o (D] Imua> = S i B Builmiia’y (mia T by ()] Impe>  (40)
take place® if MEs of T""*[b,, , ,(17)] are taken from (34). According to (9) and (10) the sum in (40) is finite. Due to the fact
that this sum is finite and to properties of the infinite sums over m’ in (34), the relation (40) is valid for any 7 if it does for some

interval of 7. But for 7 < 7, the relation (40) is valid since for these 7 the relation (34) gives us MEs of T]‘c"CZ(b,, +1(1m)). Hence,
(40) takes place for all 5 and the relation (34) is proved for 7(l;c,,¢,). The relation (35) is proved in the same way if we take

1632 J. Math. Phys., Vol. 20, No. 8, August 1979 A.U. Klimyk and A.M. Gavrilik 1632



infinite sum over m/, instead of my,. Thus, Theorem is proved for all the representations 7 (l;c,,c,) for which none of the
numbers ¢, and ¢, is an integer. According to Theorem 1 MEs of the elementary representation m(l;c,,¢,) are entire analytic
functions of ¢, at fixed 1 and ¢, + ¢,. Every infinite sum over m{), in (34) and over m,,, in (35) permits an analytic continuation
in ¢,. An analytic continuation of (34) and (35) gives us MEs of the operator There [b.. . 1(n)] for any elementary representa-
tion. The theorem is proved.

Remark: An explicit form of ME (34) and the range of summing over m,’ shows that ME (34) is an infinite sum over m7,
for every case when ¢, is not an integer suchthatc, > /.. If¢,isan integer such that ¢, >/, then ME (34) is an infinite sum if and
onlyif!,,>c,, I;,=m,, — 1. ME (35)is an infinite sum over m,, for every case when c, is not an integer such thatc, </, _,.
If ¢, is an integer such that ¢, </, _; then ME (35) is an 1nﬁn1te sum if and only if [, <c,, 1, =m,, —n.

MEs (34) and (35) can be represented as sums of generalized hypergeometric functions , , | F,. Indeed if we choose in
(34) m{, as the summation parameter of a generalized hypergeometric series then, after simple transformations, ME (34) for
m;}, >m,, takes the form

i@ T b,y ()] Im,
= [H (lin - l_]n)(ll,’l - l;ﬂ)

IIi<j(linv1 - ljn - 1)' H1<j(lln—l - ljn - 1)!(11 - 1]’")'(11 - ljn)! ]1/2

i< H'\I(Il" - /nf ! Higj(lin - ',n—l)!(lin - l' - 1)!(l;n - 1' -
e, -5, +1) . —k,— Kk K+ ki —k, —k, 2k o =1L,
X ———~—(smh17) "~ %r(coshy)™ T T o (sinh7) i S LA
AT, —e) PP A==
XH (I:n —1;;1 - 1)!(lm _l” - 1) H1<l<](1" —l") H1<:\/(lm ——lj - 1)' = r(lm cz)
i<y Uy —lj',', —) l<,§/(l" —l,,)' H,q(l —l")' =2 (e, — J,, + 1)
11, —c 0, —enil, a-l I, —4L, |+ nol 1,,—1"+1
i pan—a[lh ettt S 1 -
{Iln _Ijn}Z’{Iln - 1]2!{ l] }
41)

where

j=1

F(lin_cz) d (lin—lj_ 1)!(1 —1”) Hn*l(lin_lj,nfl)!
L(c,—1i,+1) = (=1 m_ (i, —L)

W 1) = (sinhy)™™

The relation (41) gives ME (34) for m|, < m,,, if the permutation m,«<>m, is made in the product Wl,;f"f,j,(n) an— 1Fan_ > In
(41) the sums are over all the integers m3,,,...,my,,, for whichm, _ , >m}, >max | m,,m; } wherem, , =1, + i Thenotation

{a.}4, p<q, means a set of the numbers Apy Ay o gyl

For m;,>m,, ME (35) can be represented as

<mpa| T b, , ()]|ma)

] — ! — 1 W —5 — 1. —1. — 1)
H (lm _ jn)(l, - lj,n) lQ'( 1) (lm l],n— 1) (lm Ij 1) (lm lj 1)
i<j , i<_1(1i,n— 1 ’n - 1)‘(lin—] - l'n - 1)’(11_ ljln)!(lt_ ljn)'
1 r'd,—c) k k
———— = (coshp)™ '+ % hayp)* + 5 hap)® i)
! I“(cl—l,-’,,+1)( ) “(sinhn) Z MZ (sinh7)
I_I. X ” l'._ ' . I’_ ’ -
T = yMecsenl = I L= D0 DT 1, = 1)
icj O o — 1, — I =1 =Dl no,.0n—15, D
Y O R
X “V " ( )3nle?n72
N T

€ _1’7"+1C2_1n"+1 {li_lnn+1}'1171{l'nfl_[nn}rll_lv{ll{r"z_lnn_k1}'117 inh? ]
i = Lo+ Ty = L+ VA= 1) ) “
where

F(Cl - lmr + 1) n—1 (ll - lnn)!(li,n —1 lnn - 1)! Hn _ 1(1 l’t’l - lnn)

i=1

lc Ca
"m:(1) = (sinhz) ~ .
r(lnn - CZ) i=1 (lin - lnn)! i: l([ i’n - lnn)!

The relation (42) gives us ME (35) also for m/, <m,,, if the permutation m,,<>m/,, is made in the product

Ley,c.

Viom: (D 34— 1F3, . In (42) the sums are over all the integers m?,,.. »m; ., for which min{m,,,m.}>mi>m,

in

1633 J. Math. Phys., Vol. 20, No. 8, August 1979 A.U. Klimyk and A.M. Gavrilik 1633



VIll. MATRIX ELEMENTS OF UNITARY AND
FINITE DIMENSIONAL REPRESENTATIONS OF
Uin1)

MEs of unitary and finite dimensional representations
of U(n,1) in the standard basis will be denoted by
<m,,a|T |m),a">,. Tofind them we shall use Theorem 4 and
the relations (18) and (19).

Classification of UIRs of U(n,1) is given in Sec. V. Be-
low we use the notation of classes of UIRs introduced in Sec.
V. For n + 1 numbers (I;¢,,¢,)=(,,/5...,,, _ 1,¢,c,) and for
the transposition s of these numbers we define » + | num-
bers s(l,¢,,¢,). The permutation of the /th and jth numbers is
denoted by s,

Theorem 5: The unitarizable representations of (al) and
( f1) of the classification of UIRs of U(n,1) are unitary in an
orthonormal basis of the space L 3(K,H,). Their MEs in the
canonical basis are given by (33)—(35). MEs of the operator
T (b, . ,(n)) of any other unitarizable representation, char-
acterized by the numbers l,¢,,c,, or of the finite dimensional
representation {2 (¢,,1,¢,) in the standard basis are given by

\'<mma‘T(bn 4 ](n))‘m:z’a>\

Le.co.

(P T, ), (4)
where the right-hand side contains ME of the corresponding
elementary representation 7(l;c,,¢,), and # = 0 for the uni-
tarizable representations of (a2), (a3), (b1), (c1), (el), (e2),
and finite dimensional representations; S =2, _ (/,, +1,,)
for the representations of (d1), (d2), and (c2);

B=3"_,, ., 1) for the representations of (b2).

Proof: According to Theorem 3 and relations (18) and
(19), first of all it is necessary to find the elementary repre-
sentations which contain unitarizable and finite dimensional
representations as subrepresentations. The composition se-
ries (i.e., the structure) of elementary representations are de-
scribed in Ref. 20. According to results of Ref. 20, the ele-
mentary representation m(l';c3,¢c7) contains the unitarizable
representation, characterized by the numbers (I;¢,,c,) (given

in the classification of unitary representations in Sec. V), if |

8= han 4 I(‘pu l I)Bn + 1(911 -+ I)H’

where A,h, and a,, (@, , 1) are the same as in (20)~(22), and

1 0
ﬁn i I(en + l) = 1
0 cosf,,, —sinf,
sind,, | cosf, |

(',c;,¢5) = (L,¢,,¢,) for the representations of (a2), (a3), (b1),
(c1), (eD), (e2); if (I',e,c5) = (5, 4 15inllicyse5) fOr the repre-
sentations (b2); if (,ef,c5) =5, 15, , 1; 1{liey,cy) for the
representations of (c2) for which i <j — 1; if

U6 =5, 15q , 1.Acy,cy) for the representations of
(c2), for whichj =i + 1L;if (I',e},cd) = s,,,, , 1(Licy,c,) for the
representations of ( f1) and ( f2). According to (18) and (19)
MEs of the unitarizable representation, characterized by the
numbers l,¢, ,¢,, in the standard basis are

s<mn’a‘ r [bn -4 1(77)] |mt’1’a>x

Lejel

Ium,', el )
= —ma|T b, ()] |m.ad, (44)

Lehes

m,,

where ME:s of the right-hand side are given by Theorem 4.
Applying the relation I" (z)I" (1 — z) = #/sin(7z) to the
right-hand side of (44), after simple transformations we ob-
tain (43) for every type of unitary representations and for
finite dimensional representations. The theorem is proved.

Let us note that the relation (43) with 8 = 0 also defines
unitarized MEs of the operator T (b, , , (7)) of the principal
unitary series representations. This means that the operator
A of Theorem 3 is unitary if the representation 7(l;c,,c,) be-
longs to the principal unitary series.

It follows from Theorem 5 and Remark in Sec. VII that
for some UIRs all their MEs are expressed as finite sums.
This is true for the UIRs of U(#,1) which contain only those
UIRs of U(n), for which /,,<m or /,,>m’ for some fixed m
and m’. Theorem 5 and the Remark in Sec. VII show that
ME:s of finite dimensional irreducible representations are
finite sums.

IX. MATRIX ELEMENTS AND CLEBSCH-
GORDAN COEFFICIENTS OF U(n)

It was shown in Sec. III that MEs of UIRs of U(# + 1)
can be obtained from MEs of finite dimensional representa-
tions of U(#n,1) by the analytic continuation of parameters of
the group U(n,1) to parameters of U(n + 1). According to
results of Ref. 23, any element g, geU(n + 1), can be repre-
sented as

(45)

, 0<6, . < (46)

Y

Therefore, we have to continue analytically the parameter 7. But the continuation 7—i6, , , does not transfer the matrix
b, . ,()into the matrix 3, , (8, , ,). We have to continue the matrixs ~ 'b, , ,(1)s, wheres = (5 ;), E being the unit (n X n)-

matrix. Really,
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i
s7 b, (s = 1 - 1 . (47)
0 coshy isinhy 0 cosf —sind
— isinhy  coshy sind  cosf
Hence, we shall obtain unitarized MEs of the operator T (3, , (6, , ;)) of UIR of U(n + 1) if we do the analytic continuation
7—i6 in MEs of the operator T (s ~ 'b,, , ()s) of a finite dimensional representation of U(n,1), provided these MEs are
written in the standard basis. As a result we have

s<’;1n’a|T(ﬂn -+ 1(8 ))|mn’a>s

- H (lin - jn)(lm n ,<J(ll ol ~ — 1)'(11"! - Ijn — 1)!Hig1(li,n L ljn)'({ln 1 Ijn)! .
i<j nl<](l - jn +1 1) (lm - jn +1 1)'Htg]'([m - lj,n — 1)!(11';1 - lj,n — 1)'
X (cos@)yk TR R Z (-1)* ~F(sing ) K
XH,<j( - jn+] 1)'n1</(1 - ',n—l)'Hi<j(1in_ 1) (lm - 1)'1—[ ( _ (48)
nigf(li,n +1 Ijn)'ni<j(1i,n -1 l_;n - 1)'HtQ(I in /n)'(l - i<j

Herel, , . 1.l1., 4 1l 4 1.n + 1 are the numbers which are defined by the hlghest weight (m, ,, . 1,5, 1,-sMy 41 4 1) Of the
representation by the relation/;, . , = m,, , , — i. The sum is over all m,, for which m,,, , ,>m/, >max(m,,m,,). The
relation (48) is obtained under the condition that for the right-hand side of (43) the relation (34) was used. The relation (35) for
the right-hand side of (43) leads to

s<r;ln’a| T [ﬂn + 1(9) |m,,,a>

H (1,-,, _ j,,)(l,,, _ ' Hz<]( in _/n +1 7 1)'(1171 - j'l +1 1)'H:</'(lm - lj,n - 1)'(i;n - lj,n - 1)’ 172

< J"}n'<’(l' et = by = DW= ljn — DL i — l;n)!(li.n w1 =L
X {(cosb )k" bk k=K, z ( _ l)k,, - k,’,(sing) — 2k 4k, + Kk,
| Y (P lj’,,)!rl,.q(l,.’n_ y— 1 =D =L, — D, — [jn — 1 H . -

l—Il<_/( - Jn +1 l)'nlg'(l in jn — 1) Higj(lin - ljn)!(lin - lj'n)' i<j
The sum is over all m}, for which m, _ , , . ,<m,<min(m,,,m,,).
The MEs (48) and (49) can be written through the generalized hypergeometric function 5, _F;, _».

Now find MEs of a representation operator corresponding to an arbitrary element of U(n). According to (45) .

<m, _ | T™@lm, o> =D3 . (habh)=3 D5 . (h D3 m, @D, (). (50)
Put /1 = e [e is the unit of U(n)] in (50). Then
Dy @bh)=A% (p)Z . = (@DF . (k) 'e)))

where4 3" (@,) is ME of the representation operator fora, = a,(@,) and &' is the Gel’fand-Zetlin scheme & without the first
line m,, _,. Since & decomposes according to (22), the relation (55) gives us

D, (h)*Am'(%)H AZ @A 0,0 (52)

a a i=1

Thus, ME:s of the representation operator corresponding to an arbitrary element of U(#), are defined by (51), (33), (52), (48),
and (49).

Now we use MEs of UIRs of U(n) to derive CGCs of this group. The following integral relation is valid,

m, m, | m, |"\*|m, m, | m, |
Z m,  m,_,\m,_, m,_; m,_,|m,_,
e . . .
T m, i, , m,
= (dimT )Umptﬁ” iy DD, ,[(g)D,',,,, - l(s)}*dg, (53)

where y labels the muitiple representations 77 in the tensor product of the representations T and 7""; = means the
complex conjugation.
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The invariant measure dg on U(n) is defined by means of the decomposition (45) in the same way as in the case of the
group U(n,1). Namely, if g = ha,(@,)b,(6,)h, geU(n), then

N N
dg = (nz Dt II sin®* 6, cos6,d6, H do, dh, (54)
k=2 r=1
where dh is invariant measure on U(n — 1), normalized by the condition fy,,, )@k = 1. Taking into account (51), (52), (54),
and using the relation (53) for the subgroup U(n — 1), we have

mﬂ mll m'l Vo * m'l mll mrl Y
2 ;1—!1»1 ’;n——lmn—] ’Tl:lfl ’;‘;171m;—1
¥ : : : :
’;n—] ;;l'nAlmnfly 1\ *
n— 1) dimT"™
= ( n) . f d¢nA m, (@n)A g (@n)A (¢)n) Z n-2 mn72 m
2 dim7"™
: : (55)
m”*l m"*lm”fl Yoo f; En—19n_1n—l;’hnv2
DY <m"2 T 2| =2 Lo g mom, sy ym,
- Zin s : : mym, _;ml ,;r/r:,,72
1 ”_1/'\»;".11\'71;’"11—1;”11‘»-2 . _—_—
X H I, § mimy _ smy l;mk72f dg,A4 m'(‘P1)A |(¢71)A m'(¢71)* H : (‘P )A (‘P A 5 ,(¢i)*d¢i’
k=2 ~ A~ 0 i=1
MMy My _ My
where
';k;’;k - I;EZ’ — 17;1( —2
I, {mgmy_ smi_;my
L TR YN . PR
m/2 _ ny
_ f sin* 30, cosdfd Y = = OAE  n OO e, OO (56)
0
Now carry out the integrations. According to (33)
2 . -
[ oz % @z @) =2m0r ks 57
0
To complete the integration in (56), we represent the relations (48) and (49) as
d'Tn: pM, m, 2(6): E F£11)— ](mn;;nvnf l’mn— ];mn72)
% (Sine)?_k,', P — k. 71\7” .(Cosg)k,, N +1\:“ -k, z‘kn’ (58)
d:%:: i, iy, 2(6): Z F(Z) 1(m ,.,~1,m,,,1;m,,72)
X (s1n9) HR R (gogf Yl R 2R R (59)
Now the relation (56) can be written as
’; f;l_yi 1,;;7 l;r'_1,c— 2
15' f’;; ms—l;%;~l;;;{s-2
mamg_ smi_ mg
7/2
- 3 > S of doginey ooy, (60)
- l ~ - ) 0
where
Q F(l l(ms’ms— 1’ms— la s72)FsA l(ms3ms— l’ms— l’ S—Z)F(l) (ms;ms« l;m;— ];msz)! (61)
p=2s— 1tk ki k) -k =k ko -k ke kL (62)
v=2+k_ ki ko k] ko k] kK —k Kk, —k_,—k (63)
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and the sum is the same as in (58). According to the relation 3.621(5) in Ref. 29 the integral (60) exists if Rex > 0, Rev > 0, and
under these conditions

/2
J (sinf Y ~ '(cosf)” ~ 'd6 = LB (u/2,v/2), (64)
0
where B (x,y) is a beta function. It is obvious that the parameter x in (62) is always positive. The parameter vin (63) can be both
positive and negative. If v> O, then the integral in (60) is equal to (64) with 1 and v defined by (62) and (63), respectively.
Let v<0. Then
kot kot kot k ok ok ook ki ko ok kR 42 (65)

In this case we use d-function (59) for the integrand in (56). We have
’_"—ﬁ’;s - l;’;;— 1§’_"—s -2

1, ;nws;;n-sv 1;";;;— M52

mgmg Mg Mg o

T/2 ) ,
= 3 D s QZJ do(sinfy* ~ '(cosf)” ', (66)
—_ - P P 0

where
p=2s— 11—k —k =kl )tk KR Ak Ak kI, (67)
V=2+k+k+k+k _,+k _,+k _,—k_ ki ~k_\—k_ —k_,—ki_,, (68)

and Q, is defined by (61) if F? | is substituted instead of F{") |. The parameter u’ of (67) is positive because of a summation

s—1

condition in (66). According to (65) the parameter v’ of (68) is positive. The relations (55), (57), (60), and (64) express the sums
’;n %’l m n 4 * ;n ;;;H 4
2<”_1n—1 ;n‘-n~1 m, ><’;r,z~l ;nv:lAl > (69)

Y
through the same sums but written for the subgroup U(n — 1), and therefore, define completely these sums.

m,
’
n—1

m

Separation of different summands in (69) is a complicated problem and we do not concern it here. This separation is not

unique. If the tensor product of the representations 7™ and 7™ contains the representation 7' ™" with unit multiplicity, then
(69) is reduced to one summand, the latter be defined completely. Separation of the free CGCin this case is fulfilled in the same
manner as in Ref. 30 (for the case of the Lorentz group). We omit therefore the discussion of this procedure.

Thus, we have obtained all those CGCs of the group U(n), for which the resulting representation is contained in the
tensor product with a unit multiplicity.

X.ON THE MATRIX ELEMENTS OF UNITARY AND FINITE DIMENSIONAL REPRESENTATIONS OF THE GROUP SO,
(n,1)

For the groups SO, (1,1) K= SO(n), M =SO(n — 1), A, = exp(a.), where a. is the one-dimensional subalgebra of so(n,1)
[the Lie algebra of SO, (n,1)] with the basis elemente = E, , , | + E,, , | ,. Hence an elementary representation of SOq(n,1) is
defined by an irreducible unitary representation § of SO(n — 1) and by a linear form A on a.. The representation 8 is given by
the set of numbers m,,m,,...,m , _ 1y,,; which are all integers or all half-integers (a half-integer means half of an odd integer)
such that m,>m,>-.>m, _, >0 for SO(2p — 1) and m>m,>>m, _>|m,| for SO(2p). We shall use the numbers
Lislyseeslin 2,2y Where I, = m; + [n/2] — i. The linear form A is given by the number A = A (¢). We shall use the number
¢ =A — [(n — 1)/2] instead of the number 4. The elementary representation 75,4 Will be denoted as
T Dol (0 — 1y 2 CO)=7(L0).

There is only one nonidentical element w in the Weyl group W of the pair [so(#,1),a.], and

wir(Le) = 7(l, — =a(ly, Lyl _ 1y — L, — ©) (70)
in the case of SO, (2p + 1,1), and
wmr(l,c) = 7(1,1 - ¢) )]

in the case of SO4(2p,1).

We choose a basis in the space of the representation 7(l,c) in such a way that it coincides with the union of the orthonor-
mal Gel’'fand-Zetlin bases of subspaces of UIRs of SO(n). Hence, infinitesimal generators of SO(n) are given in this basis by
well-known Gel’fand—Zetlin relations. We call this basis the canonical basis. Basis elements are denoted by |m, ,a>, where
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m, = (M ,,My,,....,M |, 5, ») are the numbers, which define UIR of SO(n), and a is the Gel’'fand-Zetlin scheme. It is shown in
Ref. 18 that the canonical basis can be chosen in such a way that the infinitesimal operator E,, | , , of the representation 7(l,c)

is given by

EZp +2.2p+ lim2p + A = i (c+ lS,Zp+ l)a)s(l;m2p+ va)!m;pi 1Ay —

s=1

3 (-

s=1

l:,Zp +1F l)ws(l;m{pi 1)

><|m2p+1’a>+ 12[ lrlrzp/ﬁ rape1— r2p+1]|m2p+l’a> (72)
in the case of SO, (2p,1), and by
Elp + 1,2p|m2p’a> = i (C + ls,Zp)ws(l;mZP’a)|m2p ’a> - ﬁ: (C s, 2p)a) (1 m2p ’a)‘m2p ’a> (73)
s=1 s=1
in the case of SOy(2p,1). In (72) and (73)
(= /2 /2
a)b‘.(l;mzﬁ l,a) - 1( r 2p+ 1)( r2p 2p+ l) 2 (74)
2p+1(4152p+1 1)“r-1r:#s(’r2p+l s2p+1)[(lr2p+l_1) 2p+1]
1
ws(l;mZp’a) = ‘ n,:— l(lr,Zp —1 + l: 2p)(lr 2p— 17" sZp 1)(1 ls 2p)(l - s,2p - 1) 172 , (75)
nf:lr;&s(lrlp sZp)[erp (sZp 1)2]
and , = m,, — i + [(n + 1)/2].

The representation 7(l,c) of SOy (2p + 1,1) is completely (or infinitesimally) irreducible iff neither ¢ nor — ¢ is compared

with /0y,

of SOy(2p,1) is completely (or infinitesimally) irreducible 1ff cand 1 — c are not compared with ll,lz,
_ - Here “c is compared with /,,/,,...

numbers ¢, 1 — ¢ coincides with one of the numbers / l,12‘,,,

an integer for integral /; or ¢ is a half-integer for half—mtegral L.

The principal unitary series of SO, (2p + 1,1) consists
of the representations 7(l,¢), for which ¢ = ip, where p is real
number, and that of SO,(2p,1) consists of #(l,¢), for which

=1 + ip, p be real number. The elementary representation
7(l,¢) contains a finite dimensional representation iff ¢ is
compared with /,,/5,...,[(, _ 1y,2pand c> 1.

As in the case of U(n,1), a completely irreducible repre-
sentation of SOy(#,1) is uniquely defined (up to infinitesimal
equivalence) by its infinitesimal character and the set of its
UIRs of SO(n). An infinitesimal character is given by the
numbers (1,¢), which define some elementary representation
of SOy(n,1) with the same infinitesimal character.

Besides the irreducible elementary and finite dimen-
sional representations, the group SO, (2p + 1,1) has com-
pletely irreducible representationsz"Dj(l,c), j=12,...p—1,
where c is compared with /,,/,,...,[,and ;> ¢ > |/, , 1|. D(l,c)
contains (with unit multiplicity) those and only those UIRs
of SO(2p + 1), which are contained in the representation
m(l,¢) and, in addition, satisfy the condition/; , | ,, , ;<c.

Besides the irreducible elementary and finite dimen-
sional representations, the group SO, (2p,1) has completely
irreducible representations D’(l,c), j = 1,2,.. ,p — 1 where ¢
is compared with /,,/,,....], ;and/;>c>1; | f
j=12,.,p—2andl, ;>c>0forj=p—1, and com-
pletely irreducible representations D *(,¢), where / 1> 1
and c is compared with /,,1,...,], _;and/, ,>c¢>0.The
representations D“(1,c), D 7 (1,¢) contain those and only
those UIRs of SO(2p) which are contained in the representa-
tion 7(l,c) and, in addition, satisfy the condition |/, , | ,,| <¢
for D“(1,c), the condition /,,,>c for D *(l,c), the condition
— 1, >»cfor D ().

p.2p
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,{, orone of the numbers ¢, — ¢ coincides with one of the numbers/,,/,,...,

wor +¢{|l,|. The representation 7(l,c)
by, v or one of the
in — 1)/2)” means that ¢ is

r The following irreducible representations of
SO, (2p + 1,1) are unitarizable:

(1) m(L,ip), if p is real;
(2)7(1,6 ), where 0 < o < s and s is an integer such that

lp _,.y=r—lunderr=12,.;s;

3 Dp—j.j=12,..,p— 1, forwhich/,
=r—1,r=1.2,..,p —j. The following irreducible repre-
sentations of SO, {(2p,1) are unitarizable:

(D) 7(1,4 + ip) if p is real;

(2) m(l,o + 1), where 0 <o <s + 1§ and s is an integer
suchthat/, ,=r,r=12,.s5,ands=0,if/, > 1;

J#p — 1 1p7 ,=nr=12..
(4) D " (lo).
All these representations are unitary if in their spaces
orthonormal basis are chosen in such a way that the infinites-
imal operator E is given by

.0 — 1, for which under

n4 Lin

Eyapa l|m2p+ PADy
=S @1
e

— i [¢* — (li,2p+ 1 I)Z]l/zwr(l;mzu,;'} va)‘mz; I+ 1A,
=1

5 .
i2p+ D wflmy, | l’a)|m2; by

+ T Unliap/loap s ilrzp s 1 = DYlmgyy v@>, (76)
r=1
for the case of SO, (2p + 1,1), and by
E, l,2p|m2p’a>\‘
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= $ e = 1 = Uy + D10 mypa)|msh >,
i=1

= $ e~ = Uy — Y10 bmsy, @) |mi; had, (I7)
i=1

for the case of SO, (2p,1). In (76) and (77) w,; are defined by

(74) and (75), respectively.

The principal unitary series representations are unitary
in the Hilbert space L }(K,H ). For the unitarization of other
unitarizable representations it is necessary to redefine a sca-
lar product in the spaces of the elementary representations.
As in the case of the group U(n,1) the operator A of transi-
tion to unitarized representations of SO (»,1) is associated
with the intertwining operator corresponding to the noni-
dentical element w of the Weyl group W [see (70) and (71)].
As in the case of the group U(n,1) intertwining operators of
the elementary representations of SO, (n,1) are diagonal in
the canonical basis, and their diagonal MEs do not depend
on a.

If the representation 7(1,c) of SO4(2p + 1,1) is irreduci-
ble, then the intertwining operator

e T= (bl |, —1), is defined by the diagonal
MEs
Am:l, L= a(i; — My, 1)/a(l’csm2p + l)’ (78
where
[,_;,, =1
atemy, =11 T (+
j=1r="1 41

If the representation 7(l,c) of SO(2p,1) is irreducible,

then the intertwining operator /7}§ _ _ is defined by the
numbers
/1,,,1“ =a(l,1 —c,m, ) /a(le,m;,), 79
where
p—14., -1 foap o 1
alem)=1 [[ €c+n [ (+o.
=1 =t o= =1 41

At fixed I, Loy, 12 HY° . in the case of
SO, (2p + 1,1)and IT}5 __in the case of SO,(2p, 1) are oper-
ator-valued analytic functions of ¢, which can be meromor-
phically continued into the whole of the complex plane. The
continued operator function will be denoted by /71¢_ . and
IT'$ _  respectively. The function /7% __is regular [and is an
intertwining operator for the representations 7(l,c) and
7(I, — ¢)] at all points of complex plane except for the points
¢ which are compared with / 1,12,...,lp and, in addition, satisfy
one of the conditions —c>/; /> —c¢>1
j=12,.p—2 I, ;> —c>|l,|. At these points /T}*_
has simple poles, and corresponding residues are intertwin-
ing operators for the representations on 7(l,c) and 7(l, — ¢)
of SOy(2p + 1,1). These intertwining operators are defined
by the numbers 4, , which are residues of the numbers (78),
as functions of ¢, at corresponding points. All the considered
intertwining operators of SO, (2p + 1,1) will be denoted by
Iy

I, —¢*

The function /7 i§ _ . is regular [and is an intertwining
operator for the representations m(l,c) and 7(1,1 — ¢) of SO,
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(2p,1)] at all points of the complex plane except for the points
¢, which are compared with /;,/,,...,/, _, and, in addition,
satisfy one of the conditions 1 —c>/;/;>1—c>1;, |,
i=12,..p—21,_,>c>}% Atthe points indicated

IT}% __hassimple poles, and corresponding residues are in-
tertwining operators for the representations 7(l,c) and
7(1,1 — ¢) of SO, (2p,1). These intertwining operators are de-
fined by the residues of the numbers (79) as functions of ¢, at
corresponding points. All the considered intertwining oper-
ators of SOy(2p,1) will be denoted by /7 _ .

Unitarizable representations are unitary if new orthon-
ormal bases are chosen such that the noncompact infinites-
imal operator £, , |, is given by (76) for SOy(2p + 1,1) and
by (77) for SO,(2p,1). Such a basis will be called the standard
basis. A basis of a finite dimensional representation of
SO, (n,1) in which MEs can be continued to MEs of UIRs of
SO, (n + 1) will be called the standard basis too.

Theorem 6: Let 11 |, be an intertwining operator for
m(l,c) and 7(I',c’), where (I',c’) = (1, — ¢) for SO,(2p + 1,1)
and (I',¢") = (1,1 — ¢) for SOy(2p,1). Let H be the closure of
the range of /7. [H coincides with the space of the repre-
sentation m(I',c’) if /7 . is reversible]. If the restriction of
m(l',c") onto H is a unitarizable or a finite dimensional repre-
sentation, then the operator 4 of a transition from the ca-
nonical basis |m,,a@) to the standard basis |m,,a)>, of H is
given by
|m,,a>, =A|m,,a>

= (V = )Cm,yal @y im @5, (80)
wherea =27 |/ .

The proofofthe theorem is carried out directly by evalu-
ation of MEs of the operator 4, the relations (72), (73), (76),
and (77) being used.

Introduce the notation
i =V = )mal T m e,

To obtain MEs of unitary representation from MEs of the
elementary representations it is sufficient to know the ratios
&,/ H., - Theorem 6 implies that

T f[ (r(c+/;2p,§ 1)F(c~/\'.vzl,+1—f—l))‘/3

5

w NN+, D1, + 1)
(81)
for the group SO, (2p + 1,1) and
l.e
o, o (T (c~1,) (c+11,)\?
s ﬁ ( ( 2 ( ,_,,)) )
. F(C - [\',Zp)r (C + [\.Zp)

lumil, s -1

for the group SO, (2p,1). The ratios I" ( — z,)/T" ( — z,) with
nonnegative integers z, and z, can appear in (81) and (82). In
this case /" ( — z,)/I" ( — z,) must be replaced by

(= D" "2 + 2/ (1 +z)).

According to Theorem 6, for unitarization of unitariza-
ble representations of SO4(#,1) it is necessary to find the
elementary representations which contain given unitarizable
representations as subrepresentations. The composition se-
ries of the elementary representations of SO,(n,1) are de-
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scribed in Ref. 20. According to Ref. 20, the unitarizable
representatlon D/(,p —J) of SO(2p + 1,1) is a subrepresen-
tation of (I, — (o — /), T = (,, L., o, 1, —1,). The finite
dimensional representation {2 (¢,1) of SO,(2p + 1,1) with
highest weight m, 5, , »,m; 5, 2., | 12, 4 2 Where
Mg 2=C—p Mg, s =l —p+i—1,
i=23,..,p+ 1,is a subrepresentation of the representation
7(I, — ¢). The representations D/(l,p — j) and D * (l,¢) of
SO(2p,1) are subrepresentations of 7(l,1 — p + j) and
m(l,c), respectively. The finite dimensional representation
12(c,]) of SO((2p,1) with the highest weight m ,, . |,
Myap 4 1sMpop o Where m, 5,y =c¢ —p,
Mo, =1 —p+i—1,i=23,.,p,isasubrepresenta-
tion of the representation 7(1,1 — ¢). MEs of the operator T
of unitarizable and finite dimensional representation in the
standard basis are given as

w(l’,c")

Kmyal T miya >, = “—(,(7<mn,a1 T lmay,  (83)
where in the right-hand side there are MEs (in the canonical
basis) of the same operator but taken for that elementary
representation 7(l',c') (defined above) which contains given
unitarizable or finite dimensional representation as subre-
presentation. For the representations 7(1,0) of the classes (2)
of the classification of the unitary representations of SO,
(n,1), MEs in the standard basis are given by the relation
(83) with (I',c’) = (1,0). MEs in the right-hand side of (83)
are the analytic continuation in ¢’ of MEs of the principal
unitary series representations in the canonical basis of
L }(K,H,). A transition from MEs of finite dimensional re-
presentations of SOy(#,1) in the standard basis to MEs of
UIRs of SO(n + 1) is carried out in the same way as for the
groups U(n,1) and U(n + 1) (see Sec. IX).

Unfortunately, MEs are found not for all the principal
unitary series representations. Only MEs of spherical repre-
sentations of the principal unitary series of SOy(n,1) are
known (cf. Ref. 31). In Ref. 32 the relation between MEs of
the principal unitary series representations of SOy(#n,1) and
ME:s of UIRs of SO(# + 1) is given. In Ref. 33 the relation
between MEs of the spherical representations of the princi-
pal unitary series and of the complementary series was con-
sidered. It was also pointed in Ref. 33 that such a relation
concerns intertwining operators of spherical
representations.

XI. ANALYTIC PROPERTIES OF CLEBSCH-
GORDAN COEFFICIENTS

The semisimple (or reductive) Lie algebra g decom-
poses into the direct sum g = | + p, where | is a maximal
compact Lie subalgebrain g. Since [{,p] Cp, pis aspace of the
representation of j. Denote this representation by D. Let p; be
basis elements of p. The operators P, of the elementary re-
presentation dy 4 of g, which correspond to the elements p;,
are the components of tensor operator transforming accord-
ing to the representation D of {. Therefore, the Wigner-Eck-
art theorem can be applied to P, In the space of the elemen-
tary representation drr 4 a basis is chosen, which consists of
bases of irreducible representations of j. Denote these basis

1640 J. Math. Phys.,, Vol. 20, No. 8, August 1979

elements by |A,6,4,n), where A are the numbers which de-
fine UIRs of j, and n labels basis elements in UIR of j. We
assume that the basis elements |A4,5,4,n> do not depend on
A. The existence of such bases follows from the definition of
a space of an elementary representation. Then, according to
the Wigner-Eckart theorem,

P|ASA > = E Caa(A8XAmD,i| A,

j=1

nYIASAND, (84)

where r is a dimension of the space p, C; 1(A,6) are the num-
bers not depending on i, n;, n, and --|--> are CGCs of the
subalgebra j. Dependence on A is completely contained in
the coefficients C; 1(A,6). For the elementary representa-
tions the coefficients C, /1,(/1 ,8) depend linearly® on c,c,,...,¢;
(the coordinates of A ). This fact will be used below.

As usual, CGCs of the decomposition of the tensor
product of the elementary representations 75 4. and 7. 4 -
into elemenary representations ;5 , are introduced accord-
ing to

ASAn>= T <A"8A
Al
1"
><|A ,,5’,/1 /’nr>®|A ",(S",/l u,nn>' (85)

As a consequence of (85), it is easy to obtain the following
relation for the infinitesimal operator I:

’,n’;A ”’5",/1 ",n"|A,5,/l,n>

Z </1 I,(Sl,i ;,n;;/i ”,8”,& ",n"|A.5,/1,n>
AlLn,
D&,bn S n)(1)+ z A8 A A

Aoy

X8 A .nY|AB8A4, n>D(/l e )(/1 ()
=2 DSy

Ay
XLA WS A A TS A T ASA LD, (86)
In fact we may write the relation (85) for the tensor product
of the principal unitary series representations. This tensor
product is decomposed into a direct integral of the principal
unitary series representations. In order to study analytic
properties of CGCs, we write the relation (85) for any ele-
mentary representations and call the coefficients of (85)
CGCs too. If the tensor product of the elementary represen-
tations 75 ,.and 7. , - does really contain in the decompo-
sition the elementary representation 75 4, then CGCs of this
decomposition satisfy the relations (85) and (86). Moreover,
if we consider in (85) and (86) only those basis vectors
A8 A ,n"yand|A ",6 ",A ",n">whichbelongtothespaces
of subrepresentations 77’ and 7" of the elementary represen-
tatins 7, - and 7. 4 -, respectively, and if the decomposi-
tion of the tensor product of subrepresentations 7' and 7"
contains the elementary representation 7 , or its subrepre-
sentation, then CGCs of this decomposition satisfy the rela-
tions (85) and (86). Hence, studying the relations (85) and
(86) for all elementary representations ms 4, Ts: s+ Ts» 4~
we include in our investigation really existing CGCs of the
group G.

The coefficients of the relations (85) and (86) for any
elementary representations 7 4, s 4» 75~ 4 are directly
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related to the invariant under G threelinear forms on the
spaces dL (K,Hy),dL %(K,Hy),dL 3.(K,H ). The invariant
under Lorentz group threelinear forms in continuous basis
were studied in Ref. 35.

Suppose that the tensor product of the representations
s 4 and 5. , . is decomposed into a direct integral of the
representations 7 4. This integral is taken over some mea-
sure. This measure depends on A and 8, but it does not de-
pend on A and n. The relations (85) and (86) do not feel this
measure. Hence, a solution of the system of equations (86)
does not depend on this measure. In order to obtain CGCs of
the decomposition of the tensor product 75. 4, ® 75 4 - into
the direct integral, this solution must be multiplied by a
function which depends on A and §. Generally speaking this
function (denote it by F') can be a generalized function. But it
is not uniquely defined. Really, the direct integral of the re-
presentations 7 , over the measure (4,6 ) is unitarily
equivalent to the direct integral over the measure ;2'(A4,8 ) if
both these measures are absolutely continuous with respect
to each other.*® To different measures there correspond dif-
ferent functions F.

We neglect the function F and consider CGCs as usual
numbers depending on A and 6. In fact the function # defines
a normalization of CGCs. Hence we neglect a normalization
condition, which depends on the measure. If we are interest-
ed in the invariant three-linear forms, the function Fis of no
importance because these forms are defined up to a constant.

The tensor product of the principal unitary series repre-
sentations can contain the representation 75 , with some
multiplicity. For this reason we rewrite the relation (85) as

14,6, 4,n57 = Y (A8 A n5A 78" A4 ",n"|ASA,n)T

i

XA A D> A" S A 0", €))
where ¥ labels multiple representations. Since MEs of the
elementary representations do not depend on ¥, CGCs
AL A A T8 A " ASA,n) Y withditterent y satisfy
the same relation (86). Let <A ",§'.A ",n";A ",6" A ",n"|A,
8,A,n>7", v = 1,2,...,m (m is the multiplicity of the representa-
tion 75 4) be a set of independent solutions of the system of
the relations (86). Acting upon this set of solutions by a non-
degenerate # X n matrix we obtain a new system of solutions.
Therefore, in order to obtain a fixed system of solutions it is
necessary to fix some initial CGCs which define uniquely all
CGCs with the same A4,6,4°,8',4 ",5 7. A number of initial
CGCs depends on the multiplicity m of 75 , in the tensor
product Ts. , & g« 4 -

Theorem 7: Let the multiplicity of any representation
7,.4 Of the principal unitary series of G in the tensor product
of representations 7. ,.and 7. , - of the principal unitary
series with fixed § ', and & ” equal O or m, where m is a fixed
integer. Then CGC<A ",6' A" \n';A ", 8" 1" .n" A8, 4,n> Y of
(87)for elementary representations, as functionsof A,4 ',A ",
is a ratio of polynomials of coordiantes ¢,,c.,...,c,c],
€3ye€C15€1 565 ,.nc)” Of the forms A,A ',A ", multiplied by a
function whichdependsonA ’,4 ',A ” and does notdependon
AA A " nnn”,
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Proof: Let us consider the relations (86) and (87) for
CGCs which realize the decomposition of the tensor product
of the principal unitary series representations 7. , - and
5. 4 - into a direct integral of the principal unitary series
representations. Fix 5,6 ',6 ”. Then CGCs are functions of
AA A " . ForallA,A ' A " wechoose the same initial CGCs
(A AL niA 76" A 5y | A8,A0n0)Y, which are indepen-
denton A,A ', A ". Theindices A,,A {4 & are chosen such that
the corresponding UIRs of K are the lowest UIRs of K in the
representations s 4,Ms. 45~ 4 - respectively. According
to the conditions of the theorem, a number of initial CGCs at
fixed 6,6 ',6 " is the same for all A,4 ", A ”. Consider the rela-
tions (86) for all linearly independent infinitesimal gener-
ators of the group G. All CGCs, as functionsof 4,4 ,4 ”, can
be found successively from these relations. Namely, the rela-
tions (86) are considered forA = Ao, A' =444 " =4.
They define uniquely all those CGCs for which only one of
the indices 4,4 ',4 " differs from the indices 4,4 §,4 § and
equals toan index of the next UIR of K. Let /T,/l_’,/l—" be one of
the systems of indices for which CGCs have been found.
Considertherelations(86)forA = 4,4 = 1’4" =1 ".They
define uniquely all CGCs for which only one of the indices
AA "4 " differs from the indices 4,4 ',4 ” and equalstoanin-
dex of the next UIR of K. Continuing this procedure, we find
successively all CGCs as functions of the coordinates
C1yCayresCC3ChreasClCT € yooney Of theforms A,A ", A ". Wedo
not give here the proof of the fact that at every step CGCs are
found uniquely. This fact can be easily verified for every
concrete semisimple Lie group. In general case, this proof
can be carried out by the induction method if one considers
the relations (86) for the basis elements P, of the subspace p
of Lie algebra g and takes into account the relation (84). The
general proof of this fact 1s cumbersome and we omit it.

Let us return to the procedure of finding CGCs. At
every step we have tosolve a finite system of linear equations.
As MEs of infinitesimal operators of the representation 7 ,
depend linearly on the coordinates of the form A, the solu-
tions of this system are ratios of polynomials. Thus the theo-
rem is proved for the principal unitary series representa-
tions. To prove the theorem for any elementary
representations it is enough to continue analytically the rela-
tions (86) with CGCs of the principal unitary sertes repre-
sentations to the space C ¥ of complex parameters
C15Cas0a0sCpCTChseesC1 €1 €Y 5o ncy’ . Due to Theorem 1 CGCs for
the elementary representations are an analytic continuation
of CGCs for the principal unitary series representations.
This completes the proof.

According to Theorem 2, some elementary representa-
tions of G contain finite dimensional representations of G as
subrepresentations. This leads to the following Corollary of
Theorem 7.

Corollary: If group G satisfies the conditions of Theo-
rem 7, then CGCs of the elementary representations of G are
an analytic continuation of the corresponding CGCs of finite
dimensional representations of G in appropriate bases.

Since the elementary representations of G contain all
irreducible representations of G, we know all CGCs of irre-
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ducible representations (in particular, of the principal uni-
tary series representations, of the complementary series re-
presentations, of the discrete series representations) if we
know CGCs of the elementary representations. The so ob-
tained CGCs for unitary representations are not always
CGCsin the orthonormal basis in which the representations
are unitary. A transition to CGCs in the orthornormal basis
can be realized by means of the operator 4 introduced in Sec.
V1. CGCs for the tensor product of finite dimensional repre-
sentations of G, obtained from CGCs of the elementary re-
presentations, do not concide with CGCs for the tensor
product of UIRs of the compact form G, of the complexifica-
tion of G. The transition is realized by means of operator A
too.

Theorem 7 and its corollary give a possibility to obtain
symmetry and recurrence relations for CGCs of infinite di-
mensional representations if those of finite dimensional re-
presentations are known. In fact, all symmetry and recur-
rence relations, not depending on the normalization
function, remain valid if a correction with the help of the
operator A4 is done (if necessary).

An analytic continuation of CGCs of finite dimensional
representations to those of the principal unitary series repre-
sentations for the case of the Lorentz group SO,(3,1) was
done in Ref. 37. However, for a transition to the orthonor-
mal basis of the space L 3(K,H,) in Ref. 37 it would be neces-
sary to do a correction with the help of the operator 4 (i.e., of
the numbers 11, /pt,,,. from Sec. X).

Remark: After the manuscript was submitted for publi-
cation, we learned of Vilenkin’s paper,* in which the formu-
las identical to (48) and (49) were obtained by means of tech-
niques different from ours. We also note that some
infinitesimal aspects of the relations between the representa-
tions of the groups SU(2,1) and SU(3), and also of SU(p,1)
and SU(p + 1) were discussed by Biedenharn and co-
authors.*”*
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Evaluation of SU(6)>SU(3) ® SU(2) Wigner coefficients?

D. Strottman®

Department of Physics, State University of New York, Stony Brook, New York 11794

(Received 15 May 1978)

A technique is described which allows the calculation of any SU(6) Wigner coefficient
(isoscalar factor) from known one-body SU(6) coefficients. The technique is applied to
calculate the SU(6) coefficients for ¢’ ¢’ leading to SU(3) singlet, octet, and decuplet
states of six quarks. A sum rule of SU(3) 9 — Au symbols is given.

. INTRODUCTION

The SU(6) symmetry group has for several years been
applied to classifying hadrons into supermultiplets. In addi-
tion to the apparently successful classification schemes, it
has in some cases been possible to calculate decay rates, elec-
tromagnetic properties and, of course, masses of the ha-
drons.' Recently, the SU(6) model has been extended by Me-
losh? to calculate matrix elements of currents between
hadronic states labelled by irreducible representation of
SU(6), yielding satisfactory results for certian axial vector
coupling constants and the nucleon magnetic moments. This
technique has been applied as well to pion and photon decay
processes of hadrons.**

In all such applications of the SU(6) model, the calcula-
tion proceeds by applying the Wigner—Eckert theorem to the
relevant matrix element resulting in a product of SU(6),
SU(3), and SU(2) Wigner coefficients (the former two are
often referred to as isoscalar factors) and a reduced matrix
element. The viability of such a procedure is contingent on
the availability of the relevant SU(6) Wigner coefficient, the
SU(3) and SU(2) coeflicients being always calculable’ irre-
gardless of the complexity of the respresentation. The SU(6)
coefficients have not, however, been calculated save for some
special cases.®

In the usual quark model, the low-lying hadrons are
constructed from the mimimum number of quarks possible,
viz., gq for mesons and ¢* for hadrons. The possibility that
some hadrons are rather states with an additional number of
quarks has been investigated by Jaffe’ using a variant of the
MIT bag model® for the case of mesons constructed from the
configuration g° ¢>. In Jaffe’s version of the bag model the
hadron states may be usefully labeled by the irreducible re-
presentations of SU(6), although in general SU(6) is not a
symmetry of the Hamiltonian. [The SU(6) group is obtained
by the omission of the much more massive charmed quark.]
Jaffe concluded that certain mesons may be manifestations
of such a configuration, these mesons having previously been
incorrectly assumed to be P-wave quark antiquark states. An
examination of the ¢*g configuration was not possible for
lack of the requisite SU(6) Wigner coefficients.

Recently, the SU(6) DSU(3) ® SU(2) Wigner coeffi-

“'Partially supported by USDOE Contract No. EY-76-$-02-3001.
MPresent address: Theoretical Division, Los Alamos Scientific Laboratory,
Los Alamos, NM 87545.
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cients were calculated’ for the case of a single quark coupling
to a many quark state. It is the purpose of this paper to show
how more complicated SU(6) Wigner coefficients may be
calculated with the help of the known coefficients.” In par-
ticular all coefficients necessary for coupling an arbitrary
number of quarks to an arbitrary number of quarks or anti-
quarks may be calculated. Similarly, any coefficient neces-
sary in applying the Melosh transform is also calculable. In
Sec. II notation will be introduced and in Sec I11 the method
of calculation will be explained.

Il. NOTATION

A ket of n quarks or antiquarks will be written as

(f1=[ALLLLS]
) A S o

>, A=g —8, H=8—8,
I I, Y

where [ f], (Au), and S denote the irreducible representations
of SU(6), SU(3), and SU(2), respectively. The physically in-
teresting subgroup SU(6) D SU(3) ® SU(2) is a noncanonical
chain, implying that the group operators do not in general
provide a sufficient number of labeling operators to uniquely
specify the ket. The quantity o is a multiplicity label which
serves to distinguish otherwise identical states. The labels 7,
I, and Y are the isospin, isospin third component, and
hypercharge.

In this paper the representations of SU(6) and SU(3)
will be labeled by the Young tableaux [ f]and [ g], respective-
ly. In addition to the labels which appear explicitly in the ket,
there must also occur further SU(3) group labels. If the
SU(3) subgroup of SU(6) is assumed to SU(3) color, then the
additional SU(3) flavor group must also be present. The re-
quirement of antisymmetry immediately imposes the condi-
tion that the SU(3) flavor representation be conjugate to the
SU(6) representation. Since the SU(3) flavor representation
is fixed once the SU(6) representation is specified, and since
no operator which appears in the procedure to be outlined
below depends on the SU(3) flavor representation, the labels
will not be included in the basis states, but are to be implicitly
understood.

For those who indulge in the vulgar habit of labeling the
irreducible representations of the unitary group multiplets
with their dimensionality, the dimensions for SU(6) and
SU(3) representations are
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TABLE I. Values of the Casimir operator of SU(6) for the allowed states of — 1
a two quark system. g((/l'u)) 2(/{ * 1)(” + 1)(4 tHE 2).

[f:‘] C(zy([ﬁ’]) (/{zxﬂzx)szx

(2]
(1]

The expectation values of the Casimir invariants are

£

(20),1 (01)0
(20),1, (ON1

R
%

eR =3 fi= i (Sh) + - 43— h)

[24

. +h—fo @
s = I (L, 2
Iy J—1 ) TP =A@+ Au+ 34 + 3p).

lIl. PRODUCT STATE AND SU(6) DSU(3)  SU(2) WIGNER COEFFICIENTS

The SU(6) DSU(3) ® SU(2) Wigner coefficients for which a single quark couples to a state of several quarks will be
referred to henceforth as one-body Wigner coefficients. In this section it will be shown how to calculate the SU(6) Wigner
coefficients appropriate for coupling several quark states to several quark states and the technique will then be generalized in a
trivial manner to allow the inclusion of antiquark states.

Consider a basis state in which configurations of #, and n, quarks are separately members of irreducible representations
of SU(6), SU(3), and SU(2). The product state may immediately be coupled to a representation of SU(3) and SU(2) through
the use of the appropriate SU(3) and SU(2) Wigner coefficients,

o LA . LA .
q (/11/1‘[) Sla)l ® q (ﬂ,auz) Sza)z, (Aﬂ)Sa}p II}Y)
= Ap)  (Gata) | () n [A1] . [ £] IS
- %, <IIY1 LY, | Iy >P[ 1 A )S @, h Yl> 7 (A2)8:0, L Y2>11M]. 3
Y1,

In Eq. (3) p is the outer multiplicity and the square bracket indicates the two kets are coupled to total isospin [ and § with the
indicated z projections. The correct linear combination of the basis states to produce a product state which is labeled by SU(6)
may be found by diagonalizing the Casimir operator of SU(6),

35 Ny + A,
¢ = Yaa, a= 3 a0 Y]

I i
where the a,, are the generators of SU(6).

The Casimir operator may be divided into three terms

CP =P+ ) +2 3 Y a,da, ), )

€en, U
Jen,

where the argument of ¢ {? in the first two terms on the right-hand side indicates that the Casimir operator acts only on the
group of n, or n, quarks. As the quark states in Eq. (3) are separately antisymmetric, any particular quark amongst the first n,
quarks—say quark »,—may be singled out from the sum over /, and similarly quark 7, may be singled out from the sum over ,
and the matrix element multiplied by n,n,,

CP =L D) + CP) + 2nn, Y a(n)a,n). ®
m

The last term of Eq. (6) may be related to a two quark SU(6) Casimir operator,

2¥a,(n)a,(n) =3 [a,n)+ a,(n)]* - Ya, () — Ya, () @)

The expectation value of %’ may now be evaluated with the use of Egs. (6) and (7).

<q,,, Al o LA AL g WAL s

J(Au)S ED| g T - = >
S B RS HSPIECN 4 1 2356, (L, i)S.a:
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=618, UEPADY + (ZEUA LN}
L] o [A]
(/ll,ul)slwl (/12 ,Uz)Szwz

, | LA £l
— ;a#(nl) - %:a'u(’h) (/i’l I[I])‘S_']a_jl (/{2 ﬂz)‘s—,za_)z,(/iﬂ)s(l)>, (8)

+ nn, < ;(Ap)Sw

3 [@. ) + a,(m)]?
u

where
8116:3=5 (A1), (A 2))S((A:42), A:f12))5(S,S)8(8:8:)8(0,60,)8(0:63;).

The matrix element in Eq. (8) is evaluated by decoupling quark #, from the first group and quark #, from the second group
of quarks by using the Wigner coefficients from Ref. 9, and recoupling using 9-f and SU(3) 9 — Ay coefficients. The last term of
Eq. (8) becomes

[fi] [11< [A] H (1] (11| (A >n;.
7

> <(/1£ui)Siw{ (10) uSier (103 4E)Se/ n,

(A DS fo; @Aw)Sio;
[ril
< S < [£3] [11< [£] > 1 m| 1A >’L
Gisie, WA S 0y (103VAp)Swa] (A5 p3)S50; (1003142800 n,
[ r3]
A  10)  Aw) @) 10 A@)
X ¥ Ul@aw) 10 Gg) ] Uldp) 10 G
@EIBX NAW) o) G S o \AB) otz ) [
R S s 3 S
XSZS uls; 4 s |Uls; 3 § <(ﬂzm)sn S (@ n) + a,(m)]* — Tam) — Ya, )y (/12,,‘23)323},
" \S' S, S S S, S # # g
©9)

where n, is the dimension of the representation [ f] of the symmetric group. The value of the two quark matrix element in Eq. (9)
is €P(g?) — 2:35/6.

The sum over the 9 — j and 9 — Au symbols may be simplified. Noting that the two-particle SU(6) Casimir operator
assumes the values given in Table I, and noting which SU(3) 8 SU(2) representations are contained in each SU(6) representa-
tion, the expectation value of the two-quark Casimir operator may be rewritten as

R G A (10)

The 34/3 may be combined with the — 35/3 arising from the one quark Casimir operator appearing in Eq. (9). The sum over.S”,
S,y and (4 ‘'), (A,,u,;) may be performed explicitly using the sum rules

sy LS s 3 S RS S
st<—)SzJU s; 3y s )uls; 4 S ==yl oy sy s, (11
S S, S S S S S, § S
Aip) 10 (Aw) Aip) 10 Ag)
(=Y Ul @y 100 @Qu) ) Ul@ip) (100 (Ay)
(A @M A e )p'

A'w)  Aop)  (Aw) /oo A'w)  Aap) A [ o5

) Aipd)  10)  (Aw)
=(=)hrer Ryl (10) (e G | (12)
A ) G Jep
The SU(2) sum rule, Eq. (11), was originally demonstrated in Ref. 10.
The matrix element of Eq. (9) may finally be written as
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6.1625[‘6%2’([ﬁ])+ %gz>([ﬁ1)—§n,nz} + 2(_)Sz+s'z+iz+uz+f=+ﬁzz<

><< [fi] [1] >_[ﬁ]_ ny
(A ; :u';)S; 0){ (10)% (’11/21)3’1(51 nfl
[f3] (11| [A] 25
-2 -y
<(,15 u)S; w} (10)5{(/1472)&52)( )

£l (1] (A )
(4 1) (0] 104 Ap)Sw,
z( [£:] ml [£] >
n, A5 p3)S; 05 (10031 (Ae:)S,
O Gipd 10 @w)
P S: S UL 10 @Aip) ()
S 8 S (/1_,,12") (Izlzz) Ap) ) o5

(13)

TABLE I1. The Wigner coefficients for coupling two SU(6) representations [3] to a final SU(6) representation [ /] with subgroup SU(3) @ SU(2). The SU(3)

labels (Au) are defined by A =g, — g, and u =g, — g..

{3]1x13]
Lf14w)s (201X 30y (B0y X (11)4 (15X (301 ADEX 14
[42] (11)0 )
[51] (11)7 - V23 V2 Vs
1 1
[42] (1)1 — —_—
V2 V2
[411]1 A1 = s :
1 1
(421 (1132 1 -
V2 V2
1 1
[4111(11)2 L L
V2 V2
[42] (30)0 1
i 1 )
[51] (30)1 —_ ' \/;
Vs Vs
1 1
[42] (30)1 — -
V2 V2
[411} (30)1 2 2 -
[51] (30)2 1 _
V2 V2
1 1
[42] (30)2 —_— —
V2 V2
1 4
[6] (03)0 — 2
Vs i
4 1
42} (03)0 2 -1
{42] (03) \/: vE
[51] (03)1 g %
[411] (03)1 2 ae\/E
[42] (03)2 1
[33] (03)3 1
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TABLE II. (Continued).

[51] (22)0
[411] 22)0 -

=
e

el

[6] 221
511 21

]
-
— <
(S|

[42] @)1

[42] 21

= TS

(511 22)2 2

3

| -

[42] (22)2

LS

[411] 22)2 Vs

N
|
1_

o] =
=

[42] (22)3 1

[411] (00)0
[411] (00)1

The SU(6) DSU(3) ® SU(2) Wigner coefficients may be tak-
en from Ref. 9. The unitary 9 — j and 9 — Ay coefficients
may be calculated using available programs.'' There is no
outer multiplicity in the (4u) coupling save for that which
already occurs in the definition of the product states.

Upon diagonalization of the resulting arrays, the eigen-
values will correspond to allowed values of the SU(6) Casi-
mir operator, and the components of the eigenvectors are the
desired SU(6) DSU(3) ® SU(2) Wigner coefficients.

The above procedure defines the necessary steps if both
wavefunctions in the basis state, Eq. (3), are comprised of
quarks. However, if one cofiguration consists of antiquarks,
e.g., q "%, the procedure must be modified very slightly. If the
group conjugate to SU(6) is SU(m), e.g., SU(3),, then a con-
figuration of 6m quarks with SU(6), SU(3), and SU(2) repre-
sentation [mmmmmm] (00)0 will have the same group prop-
erties as the vacuum and a state
|g*™ =" [m — fo-m — £11(Au)S > will have the same group
properties as n antiquarks. Hence, it suffices to substitute
everywhere in Eq. (13) 6m — n, for n,. For the current prob-
lem this would require a knowledge of the SU(6) Wigner
coefficients relating 17 quarks to 16 quarks. Since columns
of six transform as a scalar under SU(6) transformations,
and the corresponding Wigner coefficients are identical, it is
adequate to know the coefficients relating 11 quarks to 10
quarks.

The techniques used above will work for any other
groups although the use of the sum rules which simplify Eq.
(14) may not be general. They will apply, however, to
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SU4)DSU(2) ® SU(2), and probably to

SU(mn) DSU(m) ® SU(n). In the event that there occur two
or more representations of SU(mn) which have the same
value for %%, the degeneracy may be lifted by diagonalizing
¢, the cubic invariant, within the subspace of degenerate
representations.

As an application of this procedure the SU(6) Wigner
coefficients relevant for ¢° X ¢*> have been calculated in those
cases for which the SU(3) representation of the six quark
state is (00) (e.g., a color singlet), (11) or octet, and for (30) or
(03) decuplets. The coefficients are given in Table II.
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The definition of the spin-weighted spherical harmonics, .Y, is extended so that all
integral spin weights, s, are allowed. We then discuss a set of spin-weighted functions,
+Z,,, which are analogous to the spherical harmonics of the second kind.

1. INTRODUCTION

A fruitful area for research has been provided recently
by the spin-weighted spherical harmonics, which have been
discussed in relation to representation theory,' conserved
quantities in relativity theory,” Maxwell’s equations,’ the
gravitational field equations,* and in manifold theory.’ In all
applications to date the fields being described by spin-
weighted spherical harmonics (hereafter referred to as spin
harmonics) have been regular® on all points of the unit
sphere.

This paper relaxes the regularity condition, thereby al-
lowing nonregular points on the unit sphere, which are nec-
essary if the formalism of spin harmonics is to describe, for
example, the half-space problems of geophysics, where sin-
gularities occur in the magnetic field at the positions of cur-
rent electrodes. Only integral spin fields are discussed in this

paper.

2. SPIN HARMONICS

In this section we review some results which are needed
later.

For a field, £, of spin weight s, the differential operators,
3 and 8, are defined by

00 = — (dy+ icscfd, — scotf ), 2.1
8, = — (dg — icschd, + scotf ), 2.2)

where (r,0,¢ )is a spherical polar coordinate system. The spin
harmonics, .Y, are defined as

. X 9 2 9 2n+4+s—m
Y, =e™® (sm—) a, ,,,,,(cot—) ,
st im ) ; sl ) (23)

(+mid —m)\Ql + 1))‘/2
(+ (I — )4

Aspnn = ( - 1)17 n—S(

xCl=sclis 2.4

and satisfy’
OYlm =Y, _Ym=(— 1y ms?z‘ m? 2.5)
8.Y,=VU—5)+s+1),,,Y,., 2.6)
3Y,=-Vdid+s)l—s+1),_,Y, Q.7
85 Y, =@6—DU+s+1.Y,, 2.9)

where |s|<1 and I>|m|.

Goldberg et al.® have shown that the .Y, form a com-
plete orthonormal set of functions for regular integral spin
fields on the unit sphere. However, the ,Y,,, are not defined
for |s| > [, and so from Eq. (2.7), they cannot describe field, £,
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which satisfies 3§ = o ¥4. This is shown in the Appendix to
be the equation for the magnetic field from a steady state
electric monopole in a uniform half-space, which suggests
extending the definition of the spin harmonics to allow for all
integral values of s.

3. SINGULAR SPIN HARMONICS

The singular spin harmonics Y, are defined as

. G\s—m l_m @ \2m+2n
Y, =éem (tan—) b, (sin—) , (3.1
st 2 "Zo simn ) ( )

btmn = (= 1)“""(%2(’—_’")‘)1/2

dr(l + m)!
(m + 1+ n)! ’ (.2)
m+s+n)nl(l —m—n)
and satisfy
Y= (=Y, (3.3)
3, Y,,=@6—-DU+s+1),,,Y,, G4
3 Yim=s_1Yim 3.5)
0 _ Y= _;i1Yim (3.6)
8 _Y,=6=-DU+s+1D)_,_,Y,., (3.7)

with Y, being regular at the north pole (6 = 0), s,/,|m| be-
ing nonnegative integers with s> /> |m|, and ;Y,,,, Y}, be-
ing the spin harmonics defined in Egs. (2.3) and (2.4).

Since the Y, are not square integrable over the unit
sphere when |s| >/, the definitions just given could be modi-
fied by constant normalization factors, which would alter
the numerical coefficients in Egs. (3.3)—(3.7). Singular spin
harmonics can also be defined via the hypergeometric func-
tions® or through Egs. (3.5) and (3.6), together with a regu-
larity condition either at the north pole, or at the south pole
@ =n).

4. THE SPIN-WEIGHTED FUNCTIONS

Newman and Penrose have shown that 8°,Y,,, and
8°,Y,, have spin weightssand — s, respectively. The spheri-
cal harmonics of the second kind, (Z,,,, which are defined"
as

= (G DT =m\2 A, s
OZIm—( a4 )] ) Q (cosB )e'™?, 4.1)
Q7 = (~ 1y — x4 0.0, 2)
dx™

© 1979 American Institute of Physics 1648



1 dl ( 2 ! 1 +x )
—_— —1))Ln———
0.(x) = TP (¢ —1'Ln =%
_ —P,(x) LaltX, @3
1—x’
1 d! '
P(x)= T [(x2— 1)1, 44
transform as scalars, and so the quantities'?
ls|ZIm = 6MOZIM’ (4'5)
151 Zim = 8" Z i “4.6)

have spin weights s and — s respectively. As with the singu-
lar spin harmonics, the definitions given above could be al-
tered by normalization factors since the ; Z,,, are not square
integrable over the unit sphere.

From the definition of ,Z,,,,,

38,2, = — (I + 1)oZ,,
or

8,2y, = — 1+ 1)oZ,,

Using the commutator relation
[8,8] = 25, 4.7

and Eqgs. (4.5) and (4.6), it can be shown by induction that,
for positive s,

55 Zlm = (l + S)(S —I— l)s — IZlmy (48)
3 .Z,=0+)6—1—1_, .\ Zpm 4.9)
33,2, =6 — D +s+1),Z, (4.10)

We shall now show that the ; Z,,,, are nonzero for all
integral s, and that for fixed s, /, m, the .Y, and ;| Z, are
linearly independent. For this it is sufficient to consider only
positive s.

Let r(/,m) be the first integer, for fixed / and m, for
which , | \Z,, is zero. The linearity of d in Eq. (2.1) then
shows that , Z, is proportional to ,Y,,,, so that » = /. By
hypothesis, . Z,, is nonzero for alls <7 + 1, and so applying
8 'toboth Y, and ,Z,,, and using Eq. (4.8), shows that ,Y,,,
and ,Z,,, are proportional. This contradiction proves that
s Z,,, are nonzero for all 5. Linear independence follows by
operating repeatedly with 8, together with the facts that
firstly ,Y,,, and ,Z,, are linearly independent, and secondly
that ¥, and Z,, cannot be linearly dependent since 8,Y,,,, is
zero, whereas 8,Z,,, is nonzero.

A geometric picture of the action of 3 and & on the .Y,
and | Z,,, can be obtained by associating with each pair
(Y o5 Z1,,) the point (m,l,s5) in a right-handed Cartesian co-
ordinate system, with positive s along the positive vertical
direction. We call the set of points with |s| </ and 0<|m|</
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the inner region I and those with |s| > /> |m|>0 the outer
region. The set of points in the outer region for which s >0
ands < Qaredenoted by 8 *and 8-, respectively. Then 8 and 8
allow us to move vertically upand downin J,in8*, orin 8.
However, we can only cross from the inner to the outer re-
gion along the ; Z, . and only from the outer to the inner
regions along ,Y,,,..

Finally, the notation above was chosen so that
Y~ Pre™ and  Z,, ~ O "e"™®. Unfortunately, this no-
tation clashes with that of Teukolsky, who denoted by sphe-
roidal harmonics (,,Y,,,?) by ; Z,,..

APPENDIX

A steady state electric monopole denotes a steady cur-
rent /, flowing up from the south pole of a spherical polar
coordinate system, and into a uniform half-space, 0<8<7/2,
of constant conductivity o. The magnetic fields have only a ¢
component, and so the quantities 4 iB, have spin weights

+ 1.Form>0>7/2,B, = ulcscl /2xr, whileform/2>6>0,
B, = pultan(360)/27r. It is straightforward to show that in
the conducting medium, Maxwell’s equations

0B, = — d(rB.) — ir( uoE, + ued,E.),
3E, = ird B. — J (rE.),
3(rB.) = 3(rBy) — ir( LoE, + j€d Ey),
8(rE.) = d(rE,) + ird B,
B,=B, E,=E,
B, =By,+iB,, E.=Ey+iE,
imply
8& = oY, where By= —ul§ /\/7 r.
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An application of Lax’s estimates to the determination of
critical crystal thickness in nonlinear laser optics

Piero Bassanini

Istituto Matematico, Universita di Perugia, Italy
(Received 11 December 1978)

Lax’s estimates concerning the development of singularities of solutions of the Cauchy
problem for 2 X2 quasilinear hyperbolic systems are applied to the Maxwell system of
nonlinear optics, which describes the propagation of a plane polarized laser wave

through a uniaxial piezoelectric crystal, in a direction orthogonal to the optic axis, and
neglecting absorption and dispersion. The “critical thickness” of the crystal, i.e., the

distance after which (shock) singularities necessarily occur, is evaluated within an error
of order less than 10~ *, and is found to be proportional to the ratio of laser wavelength
to peak amplitude times the nonlinear optical coefficient. The critical thickness appears

to be ordinarily of the order of a few cm.

INTRODUCTION

We consider the following Cauchy problem for the
2% 2 quasilinear hyperbolic Maxwell system:

9 OH _,
ax e T
1
‘2—5+62%€+277Ei—f=0,
for teR, x>0, and
E@©¢t)=2(1+K) ' E, cos(wt),
(2

HQO©r)=2K( +K) ' (e/tt0)"*E, cos(wt ),

for teR, x = 0, where K = (€, /€,) '*. This problem corre-
sponds to a mathematically idealized version of the follow-
ing physical situation'”: A plane polarized (monochromatic
harmonic) laser wave, with wavelength A = 27¢, /0

[co = (€0 14o) ~ V?] and peak amplitude E, , propagating in
vacuo along the x axis, is normally incident on a crystal slab
D, = {0 <x <a} (a>0) with refractive index K and nonlin-
ear optical coefficient proportional to 7 [see (5) and (11)].
Then, letting a— + oo yields the half-space problem (1), (2).

It is well known that if the crystal is piezoelectric, (sec-
ond) harmonic generation may occur for the reflected (x <0)
and transmitted (x > @) wave: This phenomenon was first
revealed for quartz by the experiments of Franken et a/.* and
has since been the object of a large amount of experimental
and theoretical investigations (see, e.g., Refs. 9 and 10) using
crystals of thickness of the order of 1 cm, or less.

In some recent papers (Refs. 1-6; see also Refs. 7, 11,
and 12) a rigorous mathematical theory of (second) harmon-
ic generation of laser radiation by a (thin) slab D, of a piezo-
electric crystal has been proposed. This theory is based on
the study of a boundary value problem (at x = 0,a) for the

“Research supported by the GNFM of CNR.
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system (1), and is also physically rigorous insofar as absorp-
tion and dispersion can be neglected, the crystal belongs to
suitable uniaxial classes, and the geometry is conveniently
chosen: in particular if the crystal is of class 32 — D3 with
optic axis parallel to the magnetic field H (and orthogonal to
the x axis and to the electric field E').""'* Then, the presence
of a second harmonic wave has been rigorously proved, in
the framework of this theory, by means of a convergent nu-
merical method of successive approximations,®* based on
the existence and uniqueness theorem given by Cesari,”™
provided a is small enough, @ < @; an estimate by defect of @ is
included in the proof (a~0.2 cm. for quartz, see Ref. 7).

When a— + 0, the linear reflected wave for x > 0 dis-
appears, and the boundary conditions reduce to Cauchy ini-
tial conditions for x = 0. (See Sec. 3.) Then, according to a
general result by P.D. Lax," the smooth solution of (1) and
(2) does not exist for values of x exceeding a “critical value”
a. (Theorem 1), and estimates by excess and by defect of a,
can be obtained by applying to (1) and (2) the general esti-
mates of Ref. 13, as explicitly developed in Ref. 14. The esti-
mates by excess and by defect thus derived are found to coin-
cide at the order of approximation O (E, y,) [see (14)], and
yield therefore an exact value of the critical thickness a, at
the same order of approximation [see (13)].

2. ESTIMATE OF THE CRITICAL THICKNESS

We shall follow the notations of Refs. 7 and 14.

Let us define, as usual, ¢, = (6, o) ~ % K =cy/cy;
next, we define the new independent variable y = ¢, ¢ and
new unknown functions u = u(x,y), v = v(x,p) as follows:
K (€0/uo) "% E(x,t) =u(xyp), H(xt)=0uv(xyp)
Then, (1) and (2) become

u +0,=0, v +u,+2€uu,=0 (yeR, x>0), )
u(0,y) = 2 cosRTKA ~y), v(0yp) =u(0y) (yeR,
x=0), Q)]
where
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€= (€K 'uocsm, R2=22E KK+,

2 = (A?Q)Iﬁ' (5)

System (3) is of the form w, 4 4 (w)w, = 0, w = (¥,v), and
matrix
=10, 1; 1 + 2eu, 0].

Eigenvalues and left eigenvectors of A4 are given by

pr=(1 + 2eu)/? = by=C(pp1), by;=(p1)
(6)

Thus, (3) is strictly hyperbolic in the sense of Lax'’ provided

2|€u| <1 [see (14)], and can be reduced to the “‘second can-

onic form™ by taking scalar products by b, and b,,

respectively,

e+ po,) +pfu+pu)=0 @(=12).
The Riemann invariants z, , z, satisfy the equations (see Ref.
16, p. 430):

— P2

%—p, %= L (=12),
whence

z,=v+ (3€) (1 + 2eu)’’? — (3e) 7,

z,=v—(36) 7 '(1 + 2eu)*’? + (3¢) 7,

System (3) can now be written in the ““first canonic form”* '
in terms of the Riemann invariants (z,, z,) = z:

dz, dz,

- +pl( ) - = Or

x % Q!
9z, @) dz, 0

——— z —_— y

ox P2 dy

with Cauchy conditions

2,(0y)=p,(») = 2 cos(2nKA ~ )

+(36) 7 '[1 + 202 cos(RrkA ~ )] — 3e) |,

(™)

2,(00)=@,(y) = £2 cos(27KA ~ 'y)

— (3e) ~'[1 + 2e2 cosQRuakA ~ P+ Be)
Since in general |ef2 | €1 [see Refs. 7,9, and 10 and Egs. (11)
and (14)]: |ef2 | < 10 ~ ¢, we shall henceforth neglect terms of
the order of o(ef2 ) [i.e., terms of the order o(E, v, ), see (14)]
and take into consideration the approximate expressions of
(7) and (7') up to and including terms of the order O (E y» ).
We then find:

Zy=v+u+2° zy=v —u — 27 Yewu, (8)
=l +eu=1+2""ez, —z,)= —p,, 9

while for the Cauchy data we need only retain terms of order
o(1):

2, 0)=v(0y) + u(0y) =

(ew)u,

202 cosQQrKA ~ 'p) =g, (),
(10)
2, (0) =v(0,y) — u(0y) = 0=g, ().

Hence, z, €[ — 202, 242 ] (see Ref. 14).

Following the notation of Refs. 7 and 14 we have here:
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A =47KA ~'Q=8xK ¥ K + 1)~ 'A ~Nep/10)EyL,

1n
= le] =47K ~*(co) ™ 1l

where 47y, is the relevant nonlinear optical coefficient (di-
vided by €, ) in the rationalized MKSA (Giorgi) system of
units (y, is expressed in m/Volt). We shall henceforth as-
sume, without loss of generality, €>0, y, >0[ y, >0 for
quartz, see Ref. 10; the case of negative y, can be recovered
by a 7-phase shift of the incident laser wave (2)]. From (9) we
find

P P

€
2

9P _ %
9z, 9z,

dz, dz,
(12)

P —p2=2p,=2(1 + eu)=2;
thus, system (7) is genuinely nonlinear in the sense of Lax,"
and all assumptions of Ref. 14 are satisfied.

Lax’s estimates for strictly hyperbolic and genuinely
nonlinear 2 X 2 systems of partial differential equations are
based on evaluations of the following quantities'*:

W, = J:p:(y) da (ap_’(g;c(l_y)’ﬁ)

><A (@ (»),a) — prl@(Ma)]

X [pila.pA») — pala.py)] ~ N

() (22 ]

-
(42 [ 252 )
|
|

P00 s |

(R

where the sup w1th respect to y is taken on R and the max and
min with respect to z, are taken on [ — 242, 202 1.

Define A, = max(A4,), B, = max{(8) (i = 1,2).Then,
Lax’s theorem' can be stated as follows':

Theorem 1: The smooth (differentiable) solution of (7),
(7" exists for all x < B ~ ', and does not exist forx>A4 = '. (If
A, <0, estimate 4 .~ ' drops out). See also Ref. 18.

Since @, (y) =0, the solution of (7), (7) at the order of
approximation stated above is a simple wave' (z, =0 for all
x>0). Then, according to Ref. 14):

a,>(AL) '
By force of (11) we find here:
a>(327") 'K (K + DA(E, y))  '=(AL) .

Moreover, since the solution is (approximately) a simple
wave, we know (Ref. 14, Corollary 2) that Lax’s estimate by
excess 4 .~ ' yields the exact value of a, : Hence

(L)~

= Ssu
y

8, —sup

%
’ d¢’2

a.=A47"
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We shall now show that 4 = ' = 2(AL )~ ! {see (13)].
Indeed, by force of (8)-(12) we find here:

W, = — (e/2) f da (1/2) = (€/4)z, = 0,

Wo= —(e/2) | da(1/2) = — (e/9)[z, — 0,.0)]

.00
d
A, =sup [ - (—ﬂ) min (—-6» exp(W,))]
y dy z, 2
d
gi sup [ — (—-ﬂ)] E—G—A,
2 dy 2
see (11) and (14);
d
A, =sup [ — ( 2 ) min (f— exp(Wz))] =0;
y dy z) 2

a,mup [ T mas (5 er0m)|

)gAl

dg, €
By=sup | [——| max | — exp(W,) ) [=0.

y y 2, 2

Thus, we have 4, =B =A4,=AL /2 = (¢/2)A, the estimates
by excess and by defect of @, coincide (see also Theorem 6 of
Ref. 14), anda, = 2(AL) ~".

Summarizing, we find here, at the order of approxima-
tion O (E, v, ), the exact estimate for the critical thickness of
the crystals:

g = KK+1) A

‘ lem> E_y 2-
The nondimensional number E, y, is usually very small in
experiments’*': If we assume

E, x,<10"°, (14)
we find that the critical thickness is of the order of a few
centimeters.

For instance, in the case of quartz, according to Ref. 10,
we have the values: K =1.54, 1 =7000 &, y, =2.8x 10 —'*
m/Volt, E; y,=2.8%X 10~ " whence g, =6 cm.

( d
=—sup||—
7 P\

(13)

3. THE SECOND-HARMONIC REFLECTED WAVE

The Cauchy conditions (2) at the wall x = 0 are admit-
tedly approximate ones, valid at the order of approximation
O (1) (which is sufficient for the purposes of Sec. 2) and do
not allow for the presence of a (second-) harmonic reflected
wave for x < 0. The exact Cauchy data for x = Ocan be found
under the assumption (see the introduction) that the solution
inside the half-space x >0 be (rigorously) given by the nonlin-
ear progressive simple wave z, (x,p), i.e., z, (x,y)=0 for x >0.
For this it is necessary and sufficient that ¢, (y)=0, that is

v(0,y) — (3€) ~'[1 + 2eu(0,0)]** + (3¢) ~' =0,
[see the formulas preceding (7)], whence

HO,:)— (3" [1+2eK (€/ug)"” E0,1)]*>
+ @) '=0. (15)

On the other hand, since for x <0 the e.m. field satisfies the
linear Maxwell system [i.e., system (1) with 7 = O and €,
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replaced by €,] whose general integral is well known in
terms of two arbitrary opposite travelling (linear) simple
waves, by the same token as in'” we find:

(€0/10) > EO,1) + H (0,0) = 2eo/io)""” E, cos(wr).
(16)
The exact Cauchy data E (0,¢ ), H (0,¢ )onthewallx = 0
are solutions of (15) and (16): Elimination yields a third de-
gree algebraic equation in H (0,7 ). For practical purposes,
however, we may restrict ourselves to the order of approxi-
mation O (£, v, ) as in Sec. 2. Then, from (15) and (16) we
find:
EO1)=2K+ 1) 'E; cos(wt)
— 167K (K + 1)*] 7' (B, v)E, cosH(wt),
(7
H(0.t) = (e/up)"* {2K (K + 1) ' E; cos(wt)
+ 167K (K + 1)°] ' (E, y)E, cos’(wt)},

Thus, at the order of approximation stated above, (2)
should be replaced by (17); however, the results obtained in
Sec. 2 remain unaltered under this substitution.

The second-harmonic reflected wave for x <0 is (ap-
proximately) given by:

E(xt)= —8r[KK+ 1)) " (E x)E,
X cosQwt + 4mA ~'x),

H(x,t) =8m[K (K + 1Y) ' (ELxy) (e/10) " Ep,
X cosQwt + 4~ 'x),

(the 47 factor is due to the definition of the nonlinear optical
coefficient as assumed here).

Thus, it remains proved that a (second-) harmonic re-
flected wave necessarily exists for x <0 if the solution inside
the half-space x>0 is a (nonlinear) progressive simple wave,
i.e., if reflection from x = + o is excluded. Its (approxi-
mate) analytical expression (18) coincides with that obtained
by application of the KBM (Krylov-Bogoliubov—-Mitro-
pol’skif) perturbative method."”

(18)
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Solutions of the nonlinear 3-wave equations in three spatial

dimensions
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Recently Ablowitz and Haberman have shown that, in three spatial dimensions, the
nonlinear 3-wave evolution equation results from the compatibility condition between
two well-defined first-order linear differential 3X 3 systems having common solutions.
We construct inversionlike integral equations (I.E.) associated with both these two
linear differential systems so that the solutions of the I.LE. embody their compatibility
conditions. The scalar kernels of these I.LE. depend upon three independent variables in
such a way that there exist degenerate kernels confined in the three-dimensional
coordinate space. Consequently we exhibit, for the nonlinear 3-wave evolution
equations, an infinite number of solutions which, at fixed time, are confined in the

three-dimensional coordinate space.

1. INTRODUCTION

Since the last decade there has been a great interest in
the explicit construction of solutions of a class of nonlinear
partial differential evolution equations (n.l.p.d.e.), which we
think are solvable because they represent the compatibility
condition between different linear differential systems.'?
Within the so-called inversionlike integral equation (I.E.)
method, which consists® of the construction of a class of po-
tentials and solutions associated with a linear system (with-
out introducing the data), the above n.l.p.d.e. must result
from the construction of I.E. which are common to these
different linear differential systems. Recently another prob-
lem appeared as very interesting: namely, the explicit con-
struction of simple really confined solutions of multidimen-
sional n.1.p.d.e. We have previously developed®* a method of
constructing I.E. associated with multidimensional linear
differential systems. Whereas in two-spatial dimensions the
potential reconstructed from the L.E. are free and can be
confined in the coordinate space, on the contrary in three or
more than three coordinate space* the potentials are subject
to constraints representing always the compatibility condi-
tions between different linear differential systems. For these
dimensional cases, starting from a linear differential system,
our LE. is always associated with at least one other one.

The most simple three-dimensional spatial n.l.p.d.e. is
the nonlinear three wave equation (an interesting equation >
occurring in plasmas and nonlinear optics) which, from the
Ablowitz—Haberman and Zakharov-Shabat? works, we
know is obtained as the compatibility condition between two
3 3 differential systems. Zakharov ® has previously de-
fined a formalism (thereby extending the work in Ref. 2)
leading to a class of solutions of the nonlinear three-wave
equations in three spatial dimensions. However, among the
three coordinates he chooses only one as the variable, where-
as the other are parameters. In the present paper, all coordi-
nates are on the same footing, and our formalism is the most
general one presented up to now. On the other hand Zak-
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harov does not establish the link between the solutions of the
associated linear systems and the solutions of the linear inte-
gral equation whose restrictions are the solutions of the re-

sulting nonlinear evolution equation. This link is established
here and it may be very important for the complete under-

standing of the problem. On the other hand, Zakharov does
not study the possibility of confined solutions which is a very
important part of the present paper.

Later we rederive this compatibility result choosing two
adequate linear differential systems. In Sec. 2 we consider a
very simple representation of the solutions common to both
systems and explicitly construct the common LE. In our
method, the scalar F j‘ kernels of the L.E. associated with a
3 X3 first-order differential system must satisfy three linear
partial differential equations (l.p.d.e.). However, here both
systems lead to the same set of three 1.p.d.e. Consequently,
the F }, which a priori depend upon six variables, can be re-
presented as a function of three independent ones. Although
different choices of the three remaining variables are possi-
ble, we choose them in such a way that degenerate F j’ kernels
can be written down as the product of three arbitrary func-
tions, each of them confining, at finite time, in one spatial
direction of the three-dimensional coordinate space. Conse-
quently, we find that the potentials reconstructed from these
degenerate kernels of the L.E. are confined in the three-di-
mensional coordinate space.

In Sec. 3 we start with a general representation of the
solutions common to both systems and deduce the corre-
sponding LE. In this case essentially the same features ap-
pear; the L.E. depend upon three independent variables in
such a way that degenerate kernels lead to confined potential
solutions in the three-dimensional coordinate space. Now
we rederive the same nonlinear three waves equations as
Ablowitz and Habermann,? in a slightly different manner
such that:

(i) the intrinsic properties of the n.L.p.d.e. will clearly
appear,
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(ii) the two associated linear terms continue to have
simple common solutions when the potentials are put equal
to zero (which is a preliminary convenient step in order to
construct common L.E.).

We start with two 3 X 3 linear differentials systems with
four variables x,, x,, x;, x, (three of them that we do not
specify are associated with the coordinates space and an-
other with the coordinate time),

(L* —ikA * + R *)Y¥=0,

where A * are linked diagonal eigenvalues matrices

= (4 *8,), R * are the two 3X 3 potentials, L * are
lmked d1agonal matrice partial differential operators
L * =(*4,),and ¥is a column vector common to the two
systems:

0 ¢ © 0 0 q
R+=(o q;), Rz(q; : o),
0 0 2 9

0 4

1+)

<o

4

Z x;;a t

=41 !'tr is
wherei=1,23(@(+ 1= 2,3,1) are a cychc permutation. So
L ~ and A — are simple cyclic permutations of L * and
AT,

The compatibility conditionis [L *,L “]¥ =0or
k(A YL " W—AL*WY)+L*R "¥)—-L R"*
¥) = 0. Taking into account the relation L * (R ~
V)—L (R*¥)=[L*R~ —L "R™* +R ~(ikA ~

—R 7)—R *((kA * — R 1)]¥, we eliminate ¥ and get

0=ik[A " R*"—R*A*—A 'R~ +R A"}
+[LTR ™ —L "R™* 4+(R Ty —(R ") The first
bracket is identically zero whereas the second one written
with scalar quantities leads to a set of n.1.p.d.e. between the
six g;'s.

qufl-.1+qufqu'+“:01, l-=ia' _‘9_, P))

Ligl_\+ qj]jllqjj+ 1 =0 " ax,,

1
wherej = 1,2,3 (j — 1 = 3,1,2) are still a cyclic permuta-
tion. If further ¢/ ~ ' or g/_  [or (¢/_ )*] are proportional
then Eq. (2) can be written with only three different g’s, and
we get the nonlinear three-wave evolution equatlons ina
three-dimensional coordinate space. We add two remarks
associated with the structures of both Eqgs. (1 + ) and (2). We
remark that the same differential forms lj, Jj=1,23, appear
in both Eq. (1 + ) and Eq. (2) and we shall discuss their
dimensionality.

(i) We first discuss the three dimensional coordinate
space at fixed time: From the twelve {a,, | coefficients of the
linear differential forms /; let us define four vectors

a,
a“ = (Zzp), u = 1,...,4‘

3u
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We require that the /; be really independent in the three-
dimensional coordinate space (which is not specified at this
stage). So we assume

det(a,,a,a;)7#0, u,p,B all different. (3)
Otherwise, let us, for instance, assume that the time is r = x,

and the spatial coordinates are x,,x,,x, with det(a,,a,,a;) = 0
We define

Pi1
pi= piZ), l.= 1’2)3!

i3
det(p,;)#0 and (a,a,a;)(p;)=0 fori=1
and is different of zero for i = 2,3. We consider a change of
spatial coordinates z;, = Z}p ;X ; and fan arbitrary function

of X, 4=1,.4 which we write with the new variables
21,243,235,
=3 3 af
lz'f: a14 z (z ljpll)—-
=2 \j=1 dz,

Consequently, among the spatial derivatives, df /dz, is not
present and z, would be essentially a parameter. If Egs. (2)
are of this type, they represent in fact a n.l.p.d.e. in a two-
dimensional space plus one dimensional time which has been
previously solved.® At fixed time the confined solutions are
confined in a plane and not in a three-dimensional space.

(i) We secondly assume always the validity of Eq. (3) in
the following of the paper and discuss the four (space-

+ time) dimensional x,, (¢ = 1,...,4) associated with Egs.
(1 + ) and (2). We note that for the {/, } or the {a,, } u runs
from 1 to 4 whereas i runs from 1 to 3. Consequently, we can
always, by a change of the (space + time) variables, define
new coordinates y,, v = 1,...,4, y, = 27, , det(7, )50,
EH# 185, My = 0, i = 1,2,3 rewrite

Lfrps) = z (; 24: e ){%}i

v=2 \u=1

in such a way that df /dy, is missing. In that case y, is essen-
tially a parameter while y,,p,,y, with associated partial de-
rivatives, are really variables (linear combination of the spa-
ce + time coordinates). By this choice of variables Eq. (2)
could appear formally similar to a two-spatial dimensional
plus one time dimensional problem. However, let us empha-
size that the three (/,f) cannot be reduced (as in /) to a form
with only two different partial derivatives for the space and
one for the time. Consequently, the main difference in this
paper is that the solutions of Eq. (2) at fixed time must exist
in a really three-dimensional coordinate space instead of a
two-dimensional one. (This point leads to very important
differences concerning the possible confinement properties
of the solution.) As an illustration of the general results ob-
tained in the paper we write down a very simple example of
solutions of Eq. (2). Let us consider a four dimensional-space
XX, XX, defined by the change of variables:

3
X;=>Puxs
1
3
X4 = Eﬁu X + x4,
1

where the constants {3, } are determined by solving the four
systems of 3 X 3 algebraic linear equations:

(4a)
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=L X=0 [_Xi+a_ ¥ 1,=0 (4b)
1].)(,_0, J=123

where v, | | are constants and j = 1,2,3 is still a cyclic per-
mutation. Let us consider

qu_l a‘+1,i'1Vj+1J—1h§_1(Xjf1)gjj—

g
X i/~ '(Xy),
Dg/_ = —a;_ ;1 k5 (X8I (X;_ 1) (5a)

XAT_ (X DU (X)X,

1

3 R .
D= ] - HA§_1J+1(4X;'+1)1;’+1(X4)3
j=1

A;‘k(Xk) =J(; g;(u+Xk)th‘((u + X )du,

where 4 },g/,1 ; are arbitrary functions; then the reader can
directly verify with the help of (4b) that Eq. (5a) are solu-
tions of Eq. (2). If further we assume

lim gi(X;) = lim hj(X) = lim Hx,) = 6)

1| — oo |0 X,|— o0
whatever is the variable time chosen among the x,, s, the ¢}
Eq. (5) solutions of Eq. (2) are confined in the three remain-
ing dimensional coordinate space (outside the values where
the Fredholm determinant D can vanish).

The main result of Sec. 2 is the following. First we start
with the LE. (11), where the kernels F } are of the Eq. (4) type
and we get the solutions K ;. ! Secondly we consider the re-
striction K I=K;(y=x) and apply the relations (10) lead-
ing to the potentials g7's. It follows that the g's satisfy the
n.lp.d.e. (2). For confined g; we further assume Eq. (6) for
the F |,

In Sec. 3 the main result is the following: We start with
(11"), Fbeing of the Eq. (4') type, determine K | . and the

estrictions K P= =K; » (0 =x,), and finally obtam qj [with
Eq. (10)] Wthh satisfy Eq. (2) The confined solutions are
obtained by assuming Eq. (6").

In Sec. 4 we extend both formalisms of Sec. 2 and 3 in
the cases where the representations (8), (8") and L.E. (10),
(10’) have integration paths [ — «,x, ] and [x,,, 00 ]. This is
the most general result in this paper.

2. INVERSIONLIKE FORMALISM FOR A VERY
SIMPLE REPRESENTATION OF THE
SOLUTIONS OF EQ. (1 +)

We apply the method developed in previous papers.**
The first step is to find a set {#% [} of solutions of (1 + ) when
R * = 0. Secondly, we shall write down a set of representa-
tions ¥;, common solutions of (1 + ), when R * 0. This
will define a set {K } of transform of {¥} with respect to
{¥#7}. We shall get two sets of n.Lp.d.e. for the {K '} and
their links with the ¢} of (I + ). Thirdly, we shall construct
an L.E. such that the solutions satisfy these two sets of
n.Lp.d.e. associated with (1 4 ). Further we study the prop-
erties of the kernels of the I.E., particularly those leading, at
fixed time, to the confinement properties, in a three-dimen-
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sional coordinate space, of the g)'s reconstructed from the
L.E. Finally we provide explicit examples where these con-
finement properties can be directly verified.

A. A set (¥} of solutions of Eq. (1 + ) when
R*=0

We seek ¥ = (u)(x1,..x)8,),/ = 1,2,3,8,=1,6,=0
if i=4j, such that (L * —ikA *)¥?=0. As a third condi-
tion we require that

1
1

not be a solution of (1 + ) when R * = 0. Consequently, we
introduce three constants ¥, A, and require
1, —ikA =0, m=jj+1,
(U U] 0 Iy (72)
U2 —iky; QU =0, 7, 0554, o

where j = 1,2,3 is still a cyclic permutation (j + 2 =/ — 1).

For the explicit construction of these uJ, let us consider
twelve functions ujp and constants 4, wl] = 1 S u=1,.4
In order that Eq. (7) can be satlsﬁed these functions and

constants are subject to the following conditions:

4 a
uj(') = H vj(-:,(xy), (a_ — ik, ) UJ('L(X) =0,
n=1 x

z ml/iju VI =jj+1 (7b)
£

Zlam o = Vg 2P 40

o=

For j fixed, one 4, is given arbitrarily while the three other
are obtained by (7b) from the three algebraic equations
which can be solved, due to our condition (3) (on the deter-
minants of the three vectors a, ).

Although the condition introduced Vi 274,y is cer-
tainly trivial for the reader familiar with the inversion for-
malism, we would like to briefly explain the reason. The
difficulty is more easily understood by considering a scalar
first order case in one dimension, [@d/dx — ik + q(x)]u(x)

= 0. Let us try to represent u as

u = uy(x) + § 7K (,x)us(y)dy with (ad/dx — ik Ju(x) = 0
Substituting into the equation, we get
af P uyNd/dx + 3/y)Kdy + us(x)q(x) = 0. There is no
trivial link between the restriction K (v = x) and ¢(x), and if
as usual we want to satisfy this relation putting to zero both
terms, we get =0 and for the transform X
(8/9x + d/3y)K =0. Coming back to our 3 X 3 system
(1 1), we essentially get the same result; If uj’ is solution of
the three equations (/,, — ik/lm)u =0,m = 1,2,3, then are-
presentation of ¥ in terms of 4} leads to q"O and L.p.d.e. for
the transforms.

0: .
The fact that »;' is not a solution of /, , , — k4, , , (or

equivalently of ; | %4, , ,) makesit possible for us to intro-
duce new constants v;,, defined by

, a
(lk(7j+2 A 2) +v J+2'”+2"¢9 )u}’:O. (7c)
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In the following we represent ¥ in terms of u}), this procedure
defining transforms of ¥. These constants v,, represent, in
some manner, the strength of the nonlinearity that the trans-
forms have to satisfy. (We notice that the A » Vi A s Vi BT€
real numbers.)

B. A simple representation of the solutions of
(1+)

We define three solutions ¥;, j = 1,2,3, common to
both (1 + ):

= (U,(')(xuxzﬁs,xﬂs,'j -+ f K‘f‘(}’;xuxz,xayx:z)

XUP(x;= y)dy) ®
U, =y) = Vo), (HV,L(x#))
uFj
j=123, i=123.

In this very simple representation x, plays a particular role
because in Eq. (8) the integration path starts at either x,,x,,x;
but not at x,. In Sec. 3 we shall consider a general representa-
tion symmetric with respect to all the x,,’s. We assume

lim Kip.x,,..x)Ux;=y)=0 9)

y— +
and substitute ¥; in both systems (1 + ). We get that the
{K ;} must satxsfy two well-defined sets of n.l.p.d.e. and the
restrictions {K = K (y = x,)} are linked to the potentials

{q;}.

0‘+K‘ “+,V”+1K ‘K}+,,

0 Kj=0itKj=a; ;1K K],
‘ a

Oj + =Ij+bj,’5y"

(10
b,=a; except b;;, ,=a;; (v,;;+1)
q]j+l+a i+ 1/+1K irl=0,

g ta_y LJ'KJ'+ 1 =0,
where j = 1,2,3 is still a cyclic permutation. We first remark
thatif y, = A; or v; , = 0 [or equivalently
;4 , —ikA; , ))U] = 0], then the formalism breaks down

qJ’EO and the nonlinear parts of the n.1.p.d.e. vanish in Eq.
(10). Our second remark is that among the set of n.l. p-de. for

the {K [} in Eq. (10) there exists a subset for the {K 3, i,
IKjﬂl 4 j+ 1Y, )1+1K1+1K§I"
lej—l‘“au+1 11+1K1—1K1+1: (2')

which represents the n.lp.d.e. (2) written with the {K ;) in-
stead of the {g}}.

Consequently, if we are able to construct a formalism
(L.E.) solving the n.1.p.d.e. (10), then automatically the solu-
tions contain also the solutions of Eq. (2).

C. An inversionlike integral equation (L.E.)
associated with Eqgs. (8)~(10)

Let us consider the following integral equation:
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K jxix2,%3,x,) = F (ppc,,x0,0,,%,)

3 _
+ X | FulswixiXaxs,x)K J(s:x0,%,,%,,%)ds,

m = 1Jx,,
F‘;(y;xl""’x“) = F}(s = xj;y;xh--',x4)' (1

We remark that the free terms F 'is the restriction when

s = x; of the kernel F’ For each kemel F(sy X1y...5Xs) WE
assume the boundary condltxon

lim F;=0, lm F{Ki(s;x,,....x) =0, (12)

Y-+ S0

and that they satisfy three independent L.p.d.e.

d a :
(Im + bm,i a-'y _+_ brnJ :9; ) F}(s;y;xbxlyxbxiﬁ) = Os
m=123  (13)

and we assume, of course, that the solution of Eq. (11) exists
and is unique.

Property: If we assume that the {F j' } satisfy both Egs.
(12) and (13), then the solutions { K ;} of Eq. (11) satisfy both
the two sets of n.Lp.d.e. (10). For the proof given in Appen-
dix A.1 we remark that [due to Eq. (13)] O} * I:‘J’f = 0 and we
apply O ;* to both sides of Eq. (11).

In order to understand more clearly this result let us
remark that each kernel F / links three solutions K {,
(m = 1,2,3), via the 1ntegra1 relations (F; 'K’ ,to three other
ones K/ . In order to get an LE. for quantltles likeOF K,
we expect that the F j' must satisfy three L.p.d.e. of the type
Eq. (12). However, here we want to obtain integral equations
for both O * K and we expect a priori more than three
constraints for the F ; What seems miraculous is the fact that
the same set Eq. (13) of 1.p.d.e. works in both cases. The deep
meaning must be understood in connection with our pre-
vious work.* In the more than two dimensional case, the L.E.
of Eq. (11) type built for a first order linear differential sys-
tem 1s in fact associated also with “ghost” linear first order
systems [for a 3 X 3 system like Eq. (1 + ) or Eq. (1 — ) with
only one other “ghost” linear system}. This means that the
same set of L.p.d.e. for the { F j} must work for two associated
linear systems. Here we have managed the formalism in such
a way that the “ghost” system associated with Eq. (1 + ) [or
Eq. (1 —)]is just Eq. (1 —) [or Eq. (1 +)].

D. Properties of the kernels F/

The F J’ depend upon six variables 5,p,x,,x,,%:,X,, subject
to three first order 1.p.d.e. (13). Moreover, to each of these
six variables, corresponds a first order partial derivative.
This means that by a linear combination of these variables
we expect to define three independent new variables. In or-
der to get more easily degenerate kernels, we require that one
new variable constains s, another y, and the last one neither s
nor p. Let us define four constant vectors

B,ul
B“ = sz), ‘U, = 1,...,4

7%)
and consider the change of coordinates
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3 3
X;=3Bux» j=123, Xi=xi+ YByx:
1 1

Assuming that the F are of the form

Fi(s —x;+ X;y —x; + X; X.) “#)
and substituting into the three 1.p.d.e. (13) (where m is either
JJ £ L i+ 1or 1,2,3), we get that the four sets {5} (u

fixed, / = 1,2,3) are solutions of four algebraic 3 X 3 linear
systems:

3
Zaml j1=0» m =J’j+ 1;
I=1

3
Z i— U }l+ }—1}—1]‘_0’ j=17273y

=1

3
Z Qi Bar+ ma=0, m=123 (4b")

I=1
(4b") are nothing else but the relations (4b) of the Introduc-
tion written down here. Due to the assumption (3) for
det(a,a.a,), the solutions of (4b’) exist. Let us now show that
the q} reconstructed from Eq. (11) depend in fact upon only
the four X, (u = 1,...,4). Let us define
G (2) = K j(y = x; + 2), and, substituting Eq. (4) for the F}
kernels, we can rewrite Eq. (11):

Gi) = F(X,z+Xx4)+zf Fi(u + X5z + X3X,)
XGf"(u)du. (11"

It follows that G ’(z) depends upon five variables z, X
=1,..4,and G '(z =0)= K: ;(or qj) depends upon X ,

,u =1,..4. Consequently, the propertles of the solutlons of

Eq. (11') can be studied in this new four-dimensional space

X, . In Appendix A.2 the following properties are

established:

DX, g =1,
space.

4, determines a four-dimensional

(ii) If the time is ¢ = x,, then, at fixed time, x,,x,,X; as
well as X X, X, — t (i=4), i and j being either 1,2,3) deter-
mine a three-dimensional coordinate space.

(iii) If the time is #=£x,, for instance t = x;, then, at fixed
time, x.,%,,x, as well as X; — 18,3,X; — t83,X, — 1B, deter-
mine a three-dimensional coordinate space.

From Eq. (11) or Eq. (11"), we remark that for i

K= F{y = x) + other terms

Fiy=x) = FJ(X:X:X,). (14)
If we investigate at fixed time the possible confinement prop-
erties of the solutions in the three-dimensional coordinate

space, we must at least look at the first term F'J’(y =x,). We
note that degenerate F J’ kernels of the type
= 2 gjl:m(s - xj + ’Y_/)hjlm(y —X; + Xx)l;m(X4)
m=1
lead to Fi(y = x) = zmgj,,,(x Y L (X1 L, (X,). We consid-
er i%j and take for g, 4}, 1}, functions of the Eq. (6) type

going to zero when thelr variables are going to + 0. From
the above results it follows that, in the (ii) case (¢ = x,), either
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in the x,,x,,x; coordinate space or equivalently in the

X, XX, — t space, the |F iy = x,)| as well as the | F| of Eq.
(11) are confined. Similarly in the (iii) case (f = x,), either in
the x,,x,,x, coordinate space or equivalently in the

X, — tB3.X; — 1B3.X, — 1B,; space, the |F v = x,)| and the
|F;| are confined.

Let us define ¥ (;x,,...x0) = (K1), 7 = (F)),
= (Fj8 (s — x;)), then Eq. (11) can be written in a matrix
form:

*zf(y,xl x.,)—d”"(y,xl,xz,x,,x,,)
+ /(sy,xl, X )F ($5X1500Xs).

In the following we continue our investigations of the con-
finement properties of the solutions of Eq. (11) in the three-
dimensional space, at fixed time, in cases of degenerate F j’
kernels where these solutions can be written down explicitly.
We do not distinguish between ¢ = x, and f£x, and, always
put F{= 0 and take into account the properties obtained in
(ii) and (iii).

E. Simple examples

We assume that F! = 0 and for i=%j the most simple
degenerate kernels

Fi(s —x;+ Xy — %+ X;X,)
= gj(s — x;+ Xph j(y — x; + XL (X)),
gih i1} of the Eq. (6) type. (15)
(1) We first consider
0 FlO(s— x,) 0
9“=( 0 0 F%G(s—x;)).
F36 (s — x)) 0 0

(5b)

The solutions are written down in the Introduction, Eq. (5a).
|4 ;k (X,)| are bounded and the Fredholm determinant D is
bounded (in all discussion in this paper we disregard the
cases when the Fredholm determinant vanishes). In the nu-
merator of the solutions of Eq. (5) we see that there always
exist a product of three functions of the Eq. (6) type, each of
them confining in a direction of the three dimensional co-
ordinate space. Consequently, the reconstructed potentials
qj’f are confined in the three-dimensional coordinate space.

(ii) Secondly we consider always F| like Eq. (15) and

0 FlO(s—x,) Fi0(s—x,)
F = (F?O(s—xl) 0 0 )
F36 (s — x,) 0 0

(16)
the corresponding solutions are written down in Table Ia.
Here also D is bounded and DK 1‘ is always a linear combina-
tion of terms such that each of them is a product of functions,
confining in three different spatial dimensions, multiplied by
bounded functions. Consequently, for finite time, the solu-
tions are confined in a three-dimensional space.
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DK =hililg + 4101 (843 — g4 1)1 DK = highii43,
DR =gl A+ ALIM2 (R4, —hidY]

D=(1—A 450305 )(I*AHA:J‘[x)‘ 14 A3 A 300
R2oR3if203, RloKlif3e2, KioKlif3o2

hi=hi(X)g = g,(X)l’ﬂl(Xa)A/pf gi(u + X )hf(u+ X, )du
(4]

TABLE 1.b.

e AR ] ITHE (H IR A TR

DB, = 7a‘lv,,a§1'(h2)*[h'+ |1‘|20%0?f|h’|2(h 'Jh 'h'*—hQJIhélz)
I UHE ITHEER e THE SRR KR

vatolottitt? [ i [ 112 [1a8 11 | [

hi= Xy, L=, [1h1= [ i+ X

fh;*h; = (hi(u+X))*h (u+ X)du.

TABLE IL.c.
DK ;/1, = gz,, :,, 1;,, A ;1,11 DK} 1, = =h :;A [g‘;“’/ ?y, +4 ;z,hA %J,z, (gm,l :,,,A :;; "
—g AN 1) F=38, 1=34, j#
DK, “‘_g.»l,‘“»1“h:;|.,u i=12
DK}, =g, 13, hi, AL, DK =hi, zg?u 1A%,
A, =1, (XY )j gl (o + XS (u+ X0)g), =g, (X0)
h ;;l = h//l (X“ )1/’11 = ])/l (X“)

F. A general degenerate case
Let us assume F: = 0 and for i#j

= 2 g;:m(s -

m=1

gjl:,m’h ]ml_;m
integer.

X+ X j (v — %+ X1, (X.),
of the Eq. (6) type, m, arbitrary finite
17

Even if the solutions are too complicated to be written
in closed form [like (5a) or Table I.a when m, = 1] we can
show the confinement properties. For kernels like (17) the
solution of Eq. (11) is reduced to the resolution of algebraic
systems and the general solution is established in Appendix
A.3. We consider fixed time values (¢ being either x, or any
X, j= 1,2,3) and study the confinement properties in the
remaining three-dimensional space [using the results of sub-
section D, (ii) and (iii)]. We first have to solve a linear alge-
braic system for the quantltles {A j,p,A jip and ik §,
p=1,.,m;whered = jg‘ka ;- We remark (see Appen-
dix A.3) that these quantities have the structure (always ex-
cluding the zeros of the Fredholm determinant)
38, (X)! (X)X bounded functions + Zg.(X)! },.(X.)
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X bounded functions. Substituting these quantities into the
expression of K i (written down in Appendix A.3), then K iis
always a linear combination of crucial terms multiplied by
bounded functions, these crucial terms being the product of
three functions (at least) confining into three different di-
mensions of the three-dimensional space (at fixed time).

G. Confined solutions, at fixed time, of the three
waves n.l.p.d.e.in a three-dimensional space

Inorder to get this n.l.p.d.e. between three q}’s of Eq. (2)
we must link g and (g/)* or F; and (F/)*. Doing this, we do
not alter the confinement properties previously studied.

We consider the simple example given in Egs. (15)-

(16), assume
g(X) = a(hi(X))', (X)) = (X)),
o) real constants,

(18)

and substitute into the solution written down in Table L.a.

Let us define ¢} = B,, ¢} = B,, ¢5 = B,, then (B,,B,,B;) satis-
fy the n.l.p.d.e.
3 d
I,B, + B,B, =0, = 201‘,‘ a_x“’

L,B, + BB ;azavzsa'%a';(alzvlzo'%a';) =
I,B,+ BB ;alzvxza%(aslvslo';) =

(19)

Taking into account Eq. (18) in Table I.a, we eliminate the gj‘
for the expression of the B,’s. Finally we have six indepen-
dent arbitrary functions 4 3, & 3, 22, h 3,1}, 1} that we take of
the Eq. (6) type. The solutions are written down in Table L.b.
If one of the x, variables is a fixed time, then the B, are
confined to the three-dimensional space of the remaining x,,
coordinates (outside the valued where D, the Fredholm de-

 terminent, is zero). Applying the Schwarz inequality to the

third term of D and if 0}0? < 0, 01073 <0, we note that in this
case D0 whereas in other cases D can be zero.

This example quoted in Table I.b is an extension of a
previously given example in two spatial dimensions.* Let us
formally put all/ J’ equal to constants; then x, which is present
only in/ j()(}) disappears in the solutions. The new B,’s still
satisfy Eq. (19) with /,B; having partial derivatives with re-
spect to only three variables. If further one of the remaining
X1,X5,X; variables is chosen as the time, then our solutions are
still confined but now in a two-dimensional space at fixed
time. We verify in this simple case that the solutions still
exist in lower dimensions. Finally let us remark that if it is
easy (at fixed time) to go from an example in a three-dimen-
sional space to its reduction in a two-dimensional one, the
converse is in general not trivial.

3. INVERSIONLIKE FORMALISM FOR A
GENERAL REPRESENTATION OF THE
SOLUTIONS OF EQ. (1 +)

We consider a general representation where x, does not
play a particular role compared to the other x,, .
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A U7 = (U7s))

We start with the same U ? defined in the previous sec-
tion, Egs. (7a), (7b), (7c) and consider the same
o =(Us).

B. A general representation for three

independent solutions of Eq. (1 +)

For eachj value (1,2,3) fixed let us define Ij as either the
set {1,2,3,4} or any nonempty subset of these four integers.
Let us consider

'1/_/ = (U})(xlyxpx:uxft)aij
+ 2

pel; vx,

K, (933 x) U (y)dy)
(8"
vf(')n(xn)’ UJ(‘)#(V =x,)= Uy

i=123, j=123.

UL =0 I1
nstp

This representation generalizes the previous one, Eq. (8),
where I; = {j}. If I; has one element, then we have four
possibilities: either 1, or 2, or 3, or 4. If /; has two elements,
we have six possibilities; if /; has three elements, we have
four possibilities and only one choice if /; is {1,2,3,4}].Soforj
fixed we have fifteen different possible representations of ¥;.
This means that for the three solutions ¥,,¥,, ¥, we have
(15)* different representations of the solutions of (1 + ). Our
aim 1s to find the LLE. corresponding to these (15)* different
representations of (1 + ). We notice that if all the x,, are
equal, then all these possible representations in Eq. (8') coin-
cide. Let us assume

llm Kj (yxly yx4)U”,¢(y)_

‘. Y=o
define K, = K, (v = x,), and substitute Eq. (8') into Eq.

(1 +). We get two sets of n.1.p.d.e. which generalize Eq.
(10):

04 Kt/ K], 1= 0,

0.;#_ 0‘+1/z = I_IKJ—I’ el
i i a !
0"‘+_1+b”‘a (109
bi,=a, except b; ,,=a;, ,(Vi_1,+1), pel,
qJJ+ '+ Z amva 5,u+1 =0,

pel,

‘11+1+z —-1#141#K1+1u 0,
pel;

wherej = 1,2,3 is still a cyclic permutation. We still remark
that if {v,, = 0}, then ¢;=0 and the K}, satisfy L.p. de We
first verify that if I, = {i} or K j’#:O except K; ! :K then
Eq. (10°) reduces to Eq. (10). For mstance, for the system
(1+), wegetqg/™' +a; v, Ki* ' =0and substitut-
ing thisg/* ! relation in Eq. (10"), we find the first relation of
Eq. (10). We can similarly identify (10) and (10’) for the
system (1 —).
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Secondly from Eq. (10") we get a subset of n.1.p.d.e. for
the {K},} similar to (2).

lK’_l—l—- H']KjI}M—O, uel;
1Kj—1y+q] 1Kj+l;t_0 ﬂel (2")

Multiplying the first Eq. (2”) relationby g, , , , Vit tu and
the second onebya; v, ,,and finally summing over all
the corresponding p values both relations, we obtain the
n.lp.d.e. (2) [taking into account the links between the {g}}
and {K j) given by Eq. (10")]. Consequently, if we construct
an L.E. such that their solutions verify the n.1.p.d.e. (10",
then we obtain the solutions of Eq. (2).

C. An |.E. associated with (8')—(10)

Let us consider:
KL pxi,x) = FLpx,,....x,)
3
+ 2 2
. m= 1pel,
F’ =F! (s=

Jun

Fﬁnﬂp(sxy;xl’ ,X4)K (le, ,X4)dS (11)

x'r];y;xl,u-’x:t)y,ue,,', 77611

We remark that the free term f"}# is the restriction when
s = x, or thekernels F I’M, (pel). If (11) is written in a matrix
form, then the matrix kernel of the LE. is a 12 X 12 matrix if
I, = {1,2,3,4] for allj = 1,2,3, instead of our previous 3 X3
matrix in the [; = {j} or Eq. (11) case. It is clear, of course,
that all other intermediate cases are possible depending upon
different choices of the three I;. So we see that Eqs. (11°)
recover a great number of different possibilities; neverthe-
less, general results can still be obtained. For each kernel

F J‘m, we assume the boundary conditions

i : i A
lim F, =0, lim F; K h=
y— ¢ 5> 0

and that they satisfy three independent l.p.d.e.

P a
(l +bmua_+bjmpa) jyp(sy,xl, WX) =0, m=123,
(139

and we assume that the solution of (11') exists and is unique.

Property: If [F|, | satisfy (12'), (13'), then the (K} }
solutions of (11") verify the n.l.p.d.e. (10") (see Appendix
A’.1 for the proof).

(12)

D. Properties of F’

Jup

These F j‘.'”p kernels have six variables s,y,x,,x,,X;,X,, sub-
ject to three 1.p.d.e. (13"), and consequently we want to con-
struct three new variables, linear combinations of the old
ones. At this stage this is the same problem as in Sec. 2;
however, here we have another constraint, namely, that the
restriction s = x, of the F, kernels pel; lead to the same
kernel F ‘ However, a feature common to Eqgs. (13), (13") is
that we have three 1.p.d.e. (m = 1,2,3) and four coordinates
x,, 7 = l,...,4 [this feature is already present in the n.L.p.d.e.
(2), as was discussed in the introduction]. This means than
one on the x,, must play a particular role, and due to the
representation (8) we choose x, in Sec. 2. Here in Eq. (8') no
x, play a particular role, and we choose x,, for the kernels
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Flp (peI ). We define new coordinates X4, (7 = 1,...,4) and
try F,, to be of the form
Fi i —x,) + Xty —x,+ X15X%),  uel, pel,
Xi=3 Bix, j=123,
nstpu (4/)
Xi= 2 Blry+Xw V=1
nsEp

P = . .
Vi =41V 14/ 1Y g

Substituting (4) into Eq. (13), we find that the four {8%, ],

a = 1,...,4, are the solutions of 3 X 3 linear algebraic systems:
j=1,2,3:z mn =0m=jj+ 1,
nFu
2 G aBh a1, =0; (4b")
nFH
Z Ay + 8, =0, m=123,
NF M

whose solutions always exist due to the assumption (3). The
qj’s reconstructed from Eq. (11°) depend upon the (X%),
v=1,..,4. Let us define G ,(z2) = K ,(y = x,, + 2) and sub-
stituting Eq. (4b”) into Eq. (11'); we get

GL@=F,(Xiz+ XX+ 21 Fi.(viu
m pe

+ Xtz + XEXG N u)du. (117)

It follows that K ! i = G j, (z= 0) depend upon the sets (X »),

= 1,...,4. In Appendix A’.2a we have studied for u fixed,
the dimensional properties of these new variables and we get:

(i) Aty fixed, (X5), 7 = 1,...,
sional space.

(i) If the time is ¢ = x,,, then either x, (1,541,
i=123)or X/ X% X} —t determine a three-dimensional
coordinate space (u being fixed).

4, determine a four-dimen-

(iii) If the time is #=%x, , for instance f = x,, then either

E. Simple example

x.’"x,”u",tn: or X i — 1B, Xt — 1B5.X — B,
(i, i<3, j<3, n,54u) determine a three dimensional co-
ordinate space (u being fixed).

From Eq. (11") we get for ij

15' —F‘ (XXX Y)Y + other terms., (149

For the confinement properties of the reconstructed poten-

tials we look at the first term of the expansion. We consider
degenerated kernels

J#P ngﬁm (7’,,1 (s Xo ) + X“)h jum (y -
jpm (XA)) ‘IJEI,-, pEIJ, (61)

ghus=x,)= X ) B ol 1 s8 6 beinG Of the Eq. (6)
type, going to zero when their arguments are going to infin-
ity. At fixed time, when  equals one of the x s values, apply-
ing the results (i) or (iii) we see that | F}, | as well as |[F upl ATE
confined in three-dimensional space constructed with the
three other x,’s values. So the first term of the expansion
(14') as well as the kernels of Eq. (11') are confined in this
three-dimensional coordinate space. Now we would like to
verify explicitly, as in Sec. 2, that the whole solution K j.and
qj’f are confined in this three-dimensional space. However,
with kernels Eq. (6"), appear (for the whole solutions) func-
tions of variables X #', X #? and X' corresponding to mixed
4 values and i=4j. The study is done in Appendix A’.2b and
we get: (i) If t = X, then X4, X4 — B, XY — t deter-
mine a three dimensional space; (11) ift=x, , then

%, +X)

X =Bt X Xy — B, t determine a three-dimension-
al space; (iii) 1f t=X,, 7, PFH,, then X — Biot,

X —plt, X — f{;pt determine a three-dimensional
space

Similarly to the previous section, Eq. (11°) can be writ-
ten in a matrix form. If » is the number of elements of
1ulLulL, then 3<n<12 and the matrix (F ) i1s an n X #n ma-
trix whereas (K ) and (F ) are n X 3 matrices. This empha-
sizes the great number of cases that the formalism of this
section recovers.

We assume F'}, ;=0 and for i/ the most simple degenerate kernels:

Fjlup = gjﬁ (7/1'2 (s — Xp ) + XH)hJ{H -

gh(s=x,)=8.(X[) glhjolj
We consider a very simplecase I, = {u,}, I, = {u,}, I, =
(FJ#P
to zero and retain only for (¥ M,)
0 2# #20 (s—x,,) 0
0 0 F3,.0(—x,)
,# #‘6 (s—x,) 0 0
m‘”ﬁ (s—x,) 0 0

The solutions for the corresponding K ;. are written down in Table I.c and the g;

x, + X0 (XE),

(15

of the Eq. (6) type, uel,, pel,

§ts,tts ), where u,, 1, can take any of the integer values 1,2,3,4. Then
)is a4 X 4 matrix whereas (K ) and (F ,.) are 4 X 3 matrices. For simplicity we further put some of the kernels, i/, equal

0
F3,,.0(06—x,)
0
0

(50"

s are easily obtained with the relation (10').

Using the results of Appendix A'.2a, A'.2b (recalled above), it is easy to verify that for any choice of the time variable (among
the four x,, ’s), the qJ‘f’s are confined to the three remaining coordinate spaces. The criteria, at fixed time, are the same as in the
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previous section. We have linear combination of bounded functions multiplied by three confining functions in three indepen-
dent directions of the coordinate space. We notice that if the four i« values take all their integer possible values, then this simple

example leads to 4* cases.

F. A general degenerate case

Let us assume Fj, =0 and for i=4j the general degener-
ate kernels written down in Eq. (6"). As in the previous sec-
tion, 2.F, even if the solutions are not written in explicit
closed form, we can show their confinement properties from
their implicit expressions. The proof being of the same type
as in 2.F we sketch briefly the elements here whereas the
derivation of the solutions is done in Appendix A'.3. The
solutions If’ ., are linear combinations of terms containing
1 s gmm, h Jum and unknown quantities. However these
unknown quantities are solutions of algebraic linear systems
in such a way that their confinement properties can be stud-
ied. Substituting the solutions of these algebraic systems into
the unknown quantities present in K Ju» Wecan as above show
the confinement propertles by the same criteria. We finally
always have for K : .. linear combination of bounded func-
tions multiplied by three functions confining in three differ-
ent directions of the coordinate space (using the results of
Appendix A'.2a, A’.2b, and A'.3).

Let us recall (see the Introduction) that in Egs. (1 +),
(2) we could have introduced new variables y,’s in such a
way that the derivatives d/dx,, appear with only three varia-
bles, the last becoming a parameter. We have thought it pref-
erable to work with the x,, ’s which directly represent either a
space or a time coordinate variable.

As in Sec. 2, in order to have in Eq. (2) only three qj’s,
the kernels of Eq. (11’) must be linked.

4. GENERALIZATION OF THE PREVIOUS
FORMALISMS®

In the Zakharov *® formalism (only one coordinate) one
of the X, is really a variable, the others are parameters. As
we have seen previously, using all the x,, on the same footing
leads to a generalization of the I.E. However, for the variable
considered Zakharov uses as integration path of the L.E.
both [x,,, 0] and [ — «,x,, ]. Here we extend the previous
formalism enlarging the integration path.

(A) First we consider the formalism of Sec. 2. If among
the three ¢; given by Eq. (8), we replace one of them (or two,
or three) by

1
1 —p;
X UP(x;=p)dy[0 (v — x;) + p y)]dy)

the p; being real constants and substitute into Eq. (1 4 ),
then one can verify that the nine {K ;} and the six
{Ki=K! (v =x)] still verify the n.Lp.d.c. (10) as well as
the same relations (10) linking to the potentials ¢/. However,
now for the X j’ we have relations for ye[ — o0, + o ] instead
of only for y>x;. Secondly we consider instead of Eq. (11)
the L.E.

N +o
'/’j = ( U?(xlyxzyxs,x4)5[j + J K’,»(y;xl,...,x,,)
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— p})ﬁ}(y;xl’...)

ds F(s:p%0,)K (83X 1,+)

K (5x1,xx,0) = (1

]

m=I1v —
><[0(s—x)+p’9(x N1,

=F; (s—x), F}:Fj(s—xj+1Yj;y—x[+Xi;X4),

i
H11m F]Kf (s,+) =0,

p; being constants, F still satisfying Eq. (13). If we apply
O+ to both sides of this I.E., doing the same algebra as in
Appendix A for Eq. (11), it is easy to verify that the (K [} still
satisfy the n.1.p.d.e. (10). Consequently, from the restrictions
K ;( y =x,;) we build the q} which are solutions of Eq. (2).
Concerning the confinement properties of the solutions, the

. analysis of Sec. 2 can be extended to the solutions of this I.E.

Secondly, we consider the formalism of Sec. 3. First, if
among the ¢; given by Eq. (8"), we replace one of them (or

two, or three) by
j dy U
—Pju) #61

J}j = (U?(xbxbxl,x:i)aij +

XK{#(y;xl,---)[G O —x) +p0 (x, — ) ]) ’
the p,, being constants, and substitute into (Eq. 1 +), then
one can verify that the {K/,} and the | m} the relations

(10'). Here we have relatlons for ye[ — o, + o] instead of

y>x, inSec. 3. Secondly, instead of Eq. (11') we consider the
LLE.

K {(;x,,...,x0) = [PR:1 — [SLp:iju]l[ST-Feiyju](v;x.,)

3 + o
+ 3 ¥ Jl ) ds F,, (s3%,,....%)

m=1pel,,
XK D(s:x1,-)0 (s — x,) + 0,0 (x, — 5)],

FI:ZFJ‘:#U(S =X3)

jﬂp(ylli(s Xp) + X;'l;y — X, t+ XiEX8),
i Fhk 0

the pm bemg constants, F! up Still satisfying Eq. (13"). Apply-
ing O, to both sides of this I.E., doing the same algebra as
in Appendlx A’ for Eq. (11), we still get that the {K ]}
satisfy the n.L.p.d.e. (10"). Consequently, from the restrlc-
tions K m(y = x,) webuild the g; ‘[following the linear combi-
nation written down in Eq. (10')] which satisfy Eq. (2). The
analysis of Sec. 3 can still be applied to this 1.E. in order to
show the confinement properties of the reconstructed poten-
tials qj’ We emphasize that this I.E. is the more general one of
the paper because it contains as subcases all the previous
ones.

5. CONCLUSION

In this paper we have taken advantage of our previous
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remark* that in more than two dimensions, the inversionlike
formalism, associated with linear first order differential sys-
tems, represents in fact the compatibility condition between
different linear differential systems. This paper is an applica-
tion of this property.

As has been explained in the Introduction, due to the
structure of the linear differential parts /,, = 2a,,,d/9x,
(m=123u=12734)of thenl.p.d.e. (2) as well as of the
associated linear systems (1 + ), we could have defined a
change of variables (mixing the spatial and time coordinate)
in such a way that the derivatives are associated with only
three new variables whereas the last one appears as a param-
eter. We have chosen to work with the original form for the
/,, because the equation appears in this way in the literature
and seems more convenient for discussion of the properties
of the solutions directly in the spatial and time coordinates.
Nevertheless, there remains, of course, a reflection of this
intrinsic feature of Eq. (2) into the formalism presented here.
It is in the fact that for the variables X, (Sec. 2) or X“ (Sec.
3), entering into the kernels of the I.E. and in terms of which
the solution of Eq. (2) are finally expressed, we have
[,X4=1,X%=0for all m values whereas /, X and /, X /
(f<3) do not all vanish. However, we notice that these varia-
bles X,, X/ are necessary in order to really have a three-
dimensional coordinate space at fixed time and their associ-
ated functions / ;(X4), ! ]{H( %) play an important role con-
cerning the confinement properties of the solutions at fixed
time. The solution of Eq. (2) (corresponding to degenerate
kernels of the I.E.) are always obtained as linear combina-
tions of bounded functions multiplied by at least three func-
tions confining in three different directions of the three-di-
mensional coordinate space. If the/ ’(X4) orl (X %) werenot
present, then the solutions will be conﬁned 1n only two dif-
ferent directions of the space. The richness of the multidi-
mensional formalism is particularly illustrated in Sec. 3
where we show that many different representations of the
solutions of the associate linear systems can exist leading to
many L.E.’s and consequently to many classes of solutions of
Eq. (2). Another striking feature of the solutions of Eq. (2) is
the fact that contrary to the one spatial dimensional case, no
very particular functionals (like pure exponential) are re-
quired to be introduced into the kernels of the I.E. Due to
this property, in order to get the confinement property we
have, with degenerate kernels of the 1.E., only to consider
functions of one variable vanishing at infinity. [The same
feature was yet present® in the two spatial dimensional case
of Eq. (2), and we have found* a somewhat similar feature for
the two spatial dimensional generalization of the nonlinear
cubic Schrodinger equation.] Among all these possible solu-
tions of Eq. (2), physical considerations will probably select
the interesting ones.

There is a possible class of solutions not considered here
(as well as in our previous multidimensional n.l.p.d.e.?).
They are the rational solutions which could be obtained by
limiting process as was explained by Manakov er al.” in the
KdV case starting from pure exponential kernels of the LE.
However, this possibility® is neither restricted to these par-
ticular kernels nor to the KdV case.

1662 J. Math. Phys., Vol. 20, No. 8, August 1979

We think that the method presented here for the con-
struction of the solutions of multidimensional n.1.p.d.e. (re-
sulting from the compatibility condition of different linear
differential systems) is not restricted to the nonlinear three-
wave case and could be extended to other multidimensional
nlp.d.e.
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APPENDIX A
1. n.l.p.d.e. satisfied by the solutions of the L.E.
(11)

Let us define 171’ = F(s = x,-) and consider

K}(y;xl,...,xy)
. 3 ,

=F;+ Z F' (5:9:%1,-... X)K [(8%15...,X ,)ds, (Al)
m=1+vx,,
a d F

(1 + b a + bpj s ) j(s;y;,"’) = 0, pP= 1,2137

L =Ya, 2 (A2)

P Z Pr axﬂ

with b, = a, exceptb;, | ;=a;_, v, ;+ 1) Recall

that 0’+ —1 +b,8/9y,0;" = 0‘1 , and remark from
(A2) that 0; i iF '=0.We apply 0] '+ to both sides of (A1):

0;"Kj= ~3a,F, R}

+ zf (FLLKr+Kroi+Fi)ds,

O!"Ki= —3a,, \ FirnK]

+ zj (Fil K[+ K[O; F,)ds.
From (A2) we get

3\,
01" +b,,— )F'm=0,
( o Js

(0j7+b+lfng)Fl O

and, substituting into the rhs we get

=d F K"+]

jJ+1"/J+1 j+1

= Z(bj+ 1m — &4 l,m)FinKA_;n

for the + case, and

i cj— 1
J+1J_1VJ+U71F}71K§ for the — case.
If we compare with the solutions of (A1), we get
0I+K 9jj+1 1‘1+1K1+1K1+ =0,
(A3)
. : . ’\.71_—
O, K;—a; ;1 K;_ . Kj =0,

which are the n.l.p.d.e. (10). We recall thatj = 1,2,3 is a
circular permutation (j + 2 =;— 1).
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2. Dimensional properties of the variables X,
j = 1;2,3, x4

We recall
3
X=3pm
3
Ya;, uByi+a
1

3 3
X,=x,+ E&,xi, Zam,ﬁ4, +a,,=0, m=123

) {X, } = 1,. ,4 are independent. Otherwise let us
assume that there exist 77, 0 such that 2{X,,=0. Equiv-
alently =)_, (Emﬂﬁw) + 7x.=0or 7, = 0 and

n Ba Ba m
(sz B Baz) (’?2) =0
o Bu By \p,

or (AS)

Bi a,;
BiZ) y &= (;121) .

i3 3{

3
Eamlﬁjl=0) m=]a]+ 1’
=1

=0, (A4)

- 1LY~ 1,

det(Bsz,Bs) =0, Bi =

However, with (A4) we can calculate directly
det((a,,a,,a:)(B.,B.,8;)) and taking into account
det(a,,a,,a,)70, we get
Idet(BlsBZ’Bl)l = lV12V23V31a12(123031[det(a,,az,aj)]"|.(A6)
(i) If t = x,, then X, X, X, — t (i, i<3,j<3) areinde-
pendent, Otherwise there exist 7,7, ,7. different of zero such
that 7.X; + 7,X; + 7.(X: — x,)=0 or

i Bji B4i i

(BU B; Ba,) ( ) =0, iAjFkAi

ik Bjk B4k, Ni

or (A7)
det(B,B,B.) = 0.

With (A4) we calculate det((a,,a,,2,)(B;,B;,B.)) and get
|det(B;,B,,8.)|
=iV B8 Pk 14[det(aaza;)] .
(A8)
(iii) If t5~x,, for instance ¢ = x;, then X; — x; B4,
X; — x3 B3, X4 — x5 Ba3 (14, i<3,j<3) are independent. The
coordinate space is x,,X,,x,; however x, appears only in X,.
Consequently, in order to have a three-dimensional coordi-
nate space, we have only to verify that X; — x; 8,5, and
X; — x33;3, are independent. Otherwise there exist 7, %0,
X383 + 9AX; — x3 8,)=0 or

7,0 such that 7(X, —
B By nN __
(C,j) = (ﬂiz ﬂ;) , (C,j) (7]) =0 or det(C,.j) =0.
(A9)

However, with the help of (A4) we can still calculate
det(C}), and we get

|det(C,)|
={v;,_ Y- 1% - 1,i @ _ ;9 ;ldet(a,a,a;)] ~ 1|,
I#j#kFi, ijkbeing 1,23,k —1=k+2. (Al0)
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3. Solutions of (A1) for general degenerate
kernels

Let us assume in (A1) F{= 0 and

= ﬁi g/l:m(s_

m=1

X+ X)h o (y — x;+ X)), (X)),
(A1)

where m, is finite. (A1) can be written

K}:?}—%—JIF}FJ;K;+J‘J‘F}FJ;(KJ’F+J‘F’}(Kj’f, it
ik, KoK . (A12)
Let us define

[ st + Xom o + X0 = Sk,

S 28ip(s — X1+ X, K f(s)ds = A i,
and, substituting (A11) into (A12), we get
K(y) =

Sl EH iy =%, X0 |85 + BH,HICH(X)

m

XA,

Jip

+ >l (X)C P (X)HA Jkp]
P

+ 1 b
if i<k, then K j«>K }. (A13)
The K ; defined in (A13) depend upon the set of quantities
{4 ﬂp,A Lo A A ],P} = 1,...,m,. These quantities are solu-
tions of algebralc systems which are obtained from (A13)

multiplying by g7, or g,p and integrating. Then two other
relations are obtained by i<k,

(XA)h ’km(y - X; + X; )A Jkm

~ T AL TCCrL L,

jmap
i ipp
ZA jkp't kp c k
s

Jip ipt jm™ ji
n P'F#p

—S4 ;k,,,zc;ifmcz"ﬂl 3
2

AI l: Zl} l C]P"‘lC"”IP

im® kp’

= ZgjmlﬂnCﬁ’m and i<k, (Al4)
j,p EA i ZC;?""C}}"”I},,,];'F.

. zA S ZC kpmctmp kp jlm ZA o 1

= Z Gl (nC 1™ and ik (A15)

Finally KA' !is written

le (X )hjm(X)[g‘m(X) + Ellp(X4)C;mp(X)Ale
+ Sl (XIS, )A,k,,] b S X o (XA b

APPENDIX A’
1. n.l.p.d.e. satisfied by the solutions of the I.E.
()

Let us define F =F J‘M, (s = x,,) and consider
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; ~, 3
K (yxyx) = F, + z z

m=1pel,Jx,

F o p(SiX1seXs)

K 2(s,x,...,x.)ds, (A'D)
i 9 d
(1 +bmt Ay +biwa ) M,(syx., X =0,
uel, pel, p=12,3, (A"2)

withb,, =a,, except b7 ' = a,,(v,, + 1). We recall that
0’+ =1+ b 8/8y, 0" = 01’11# and remark from

(A 2) that 0} iy F =0. We apply O ,* toboth sides of (A'1)

011‘: K/’u = - ZF uz bt EZJ(F"WPJ

+K"’0’+F’ )ds,

i jn * mup

0} Kju= ~ SFn S Ry + S5 [ Pl K
+ K;;,O;-F',W)d
From (A’2) we get
! m a l
(Ollf + bJP Js ) mup 0’

[ — a i
(o,,, +b) Hpa)pw 0,

and, substituting into the rhs, we get

li i m m
K 2 2 "mp JPK
m pel,,
— Fiogm _ m
"EZF'"#KJP( ajp+bjp)
m pel,,
—_— i j+1
=F Z oY for the + case and
pel,
= . .
-ZZF H(_aj+lp+bj+1p)ij
mpel,,
_ i S 1 _
=F; 1, > @1, 1,K)  forthe — case.

pel;,
Comparing with the solutions of (A’1) we get Eq. (10)
[/ = 1,2,3 is a circular permutation (j + 1 =/ — 2)].

2.a. Dimensional properties of the variables X,
j=1,2,3, X, u fixed, written down in Eq. (4b")

(i) { X4}, a = 1,...,4, are independent. Otherwise let us
assume that there exist 77, Z0 such that £jX#5_, = 0.
Equivalently, 7, = 0 and

lltw Bgfpu ﬁg‘% m
;14% B lZl(p; ng (772) =0

Yoo Bhe. Bhe) D
or
"
det(B’{B‘z‘BS‘)=0} 3 ijf'
pFp, i=123) B = :’
i@,
We define
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alw,
a, =| %, |,
A3,

with (4b") we get
|det(B;B2B5) |
= | @), 85,831, V2, V3| [det(a,a,8,)] 7!
(i) If r = x,,, then X#, X¥, X{ — ¢ (i, i<3,j<3) are

independent. Otherwise there exist 7,,7;,7, such that
XY+ XY + X —x,)=0o0r

H I H

ip, Jje ﬁ 4 Uh

u u © -
B i Jg: 4, Ui =0

Bl Ble. Blig/ \M

or
det(BiBiBY) =0, @7u, i=123.
With (4b") we get
|det (B/B/B4) |
|alua2ua3,u l—l,u l,ul[det(a ‘p‘)]~1
(iii) If r%x,, , for instance, = x,,, then X — x, B o

Xj'l - xwﬂﬁw Xy— xwﬂ
pendent. x,, appears only in X, —
verify that 77,540, 17,50 and 7,(X¥ —

ho, (7,1<3,j<3, @, 74) are inde-
x,p%,, and we have to

Wﬁ“l’\

+ (X ¥ —x, Bh,) =0is not possible; otherwise,
Lo [ ;
(CH) = (ﬂ’“ "’") ., (Ch (7’) =0
H n;
ig: S
or
det(C;) =0.

However, with (4b") we get (i=4j£k=4i, k<3)

Idet(c )|—Ivl—lyvjflﬂalflﬂaj 1;1.ak-l¢J
X [det(a,a,a,)] |

2.b. Dimensional properties of the variables X",
X2, Xy, at fixed time t and 1~ i)

We recall
M — Ho __ H
Xi - Z B‘¢’l [Js 4 _xlul+ Z B4‘Pix¢’/’
PiFH P
H: 2 Ha — ] —
X X+ Blix, +Bhx,, =123,j=123,
PFy QL= PuPrPulls = @i
We define
B, 0O b,
J— 1 2 Hy
BI - é:Pz B;;z 4, )
K 2] H
Bi@ Jp: 49,
l," s t
i Jo: 49,
_ i 7% i
ﬁII - ﬁhp. Bj@ 4, P
0 I i

JHL
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M O Hy

i, 4,
By =| B # e
= i, Jes 4,
i
0 . 1
@) Ift = x,,, , the remaining spatial coordinates define a

three-dimensional space. Otherwise there exist 7,40,

n; #0, 17,50 such that
X+ (X — X))+ n( X5 —x,)=0

73

or

detf, =0.
However, with (4b") we get, is&j7k=£i0, k<3,
|detBy| = |a; _ 108 — 108k —10Vi— 10V — 1
B 7

(i) If t = x,,,, we still have a three- dimensional space.
Otherwise there exist 7,70, 1,50, 7,740 such that

X —Bhx,) + X+ (X —Bh.x,) =0

X {det(a,a

or
detf; = 0.
A direct calculation gives, izAjk=4i, k<3,
|detﬂu| =1a; 1,8 19 15V wVi— L
X [det(a,8,8,)] |-

(i) If ¢ is neither x,, or x,, but for instance x, , we still
have a three-dimensional space. Otherwise there exist 7, 520,

070, nAO with 7K 1 — Bl x,) + MKl — Blax,)
+ 7 (X§ —Bhx,) =0
or

detBIu = O. With (4b”) we get

|detBiul = |4, _ 1,8 1,8 — 1Y — 10Y) — 1

— 1
[det(a,a a,)] [-

3. Solutions of (A’1) for general degenerate
kernels
Among the elements { 1,2,3,4} let us call p; those be-

longing to 7;, or p€l; and similarly p €I, p,€l,. We assume in
(A'l) F,W_O and

= 2 Eomv(s = %) + X])

h;ﬂj.m(y x +Xp’)ljpm(Xﬁ’)) (A'3)
where m; is finite and g}ﬁ'fm(s =x,)= =gpm(X7). (A']) can
be written
K =F, + fj i p/[ Fl Ko+ i<—>k]

+ 2 ka e J’:, if ik, K}plﬁK};k.

Pl

Let us define
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nnp (Xpl,ka)

Jkpm
=J 8o L (vEu+ X5 YV §, U+ X5y,
0

A =3 g‘,f;m Vs (5 —X,,) +XR)KE (s)ds
o€l

and substituting (A’3) into (A'4), we get two equations,

where K j’p s depend upon the set of quantities

A Gy A} p = o il .1, il

These quantities are solutxons of al gebralc systems which are

obtained from (A'4) multiplying by g,p y org,p .+ integrating,

and summing over all the p,€/l; (and ik ):

ip;
Ap—- 3 3 LomClin2, 2. {5y C A e

m pel, m’'piel;

imm Py Ji m Ip
lkpmckjp pAka} E Z lkpmc jkm

m pgl,

= Z E ljp ng’p ij,P'"p and

mpe

kPA kpm imm’ 4 Jp;
A — Z 2 prm WZ Z [[kpmcup PJAJ'"‘

m pel; m' pgel,

2 Z lkpm ":!’)P"/.'P jkm

m pgel,

- Z E IJP!”gJP mCJ}:Z;; and

m pel,

(A'5)

i<k,

IP lmm
+ lkPm kam kip, p

ik (A’6)

Finally K Jp, 18 written

= Sl X Oh (XD 8 (K] + 5, Z 7.
m’ pe

X (X)Cmm g 4]

ifp, p{" jim' kp,m'

(XP/)Ctmm ip }

kip. p; ka

+ Zl kom (XA (X7 YA K (A'7)

Now we assume that the kernels in (A’3) are of the Eq. (6)
type and always disregard the zeros of the determinant of
(A’'5), (A’6). From (A'5), (A’6) we see that the solutions are
linear combination of bounded functions multiplied by

l o mg]p .. and i<>k. Substituting into K: jps Westill get a linear
combination of bounded terms multiplied by functions con-
fining either in X, X /. X4 or in X ", X /X %" with i=£j.
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Rigid body motions, space curves, prolongation structures,

fiber bundles, and solitons
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The dynamics of a nonlinear string of constant length represented by a helical space curve may be studied
through a consideration of the motion of an arbitrary rigid body along it. The resulting set of
compatibility equations is shown to result in the class of nonlinear evolution equations solvable through the
two component inverse scattering phenomenology. A class of pseudopotentials and prolongation structures
follow naturally due to the intrinsic group structure of the phenomenon. This leads to an identification of
the underlying fiber bundle structure and connection forms. Thus a unified picture emerges for a class of

soliton possessing evolution equations.

1. INTRODUCTION

Recent advances in the solution procedure of nonlinear
partial differential equations have made it possible to solve
the initial value problem of a large class of evolution equa-
tions.'™ These are especially of dispersive type in one-space
one-time dimensions and exactly solvable through the in-
verse scattering transform'-? and Bicklund transformation
methods.>* Broadly they may be identified? with the well-
known AKNS system (and its generalizations) for the two
dependent variables g(x,t) and r(x,t),

A, =qC —rB, (1a)
g, — 24q = B, + 2i{B, (1b)
r,+24r=C, - 2i{C. (1c)

Equation (1) is the result of imposition of the integrability
condition on the two-component eigenvalue problem

Ve + 100, = qu,, (2a)

U,y — i6U, = ruy, (2b)
and the time evolution of the eigenfunctions:

v, =A x5, + B .08, (3a)

vy, = C 0,08 oy — A (x,1,8 vy, (3b)

with the usual identifications.?

Now as all the solvable evolution equations associated
with (1) possess analogous solitonic and other integrability
properties, a basic question arises: What is the underlying
mechanism that aids in their solvability and what possible
interpretation of the equations and their solutions can be
given. A number of apparently differing viewpoints have
been offered during the past few years.”'? From an elemen-
tary geometric point of view, Lamb’ has demonstrated that
the intrinsic equations governing the motion of helical space
curves are intimately related to the equations of type (1).
Stressing an abstract geometric point of view, Wahlquist and
Estabrook® have shown that the existence of certain Lie-al-
gebraic structures—prolongation structures—and pseudo-
potentials are the basic mechanisms. These structures have
in turn further been interpreted by Hermann® as connection
forms of certain fiber bundles. He had also shown that the
Lax’s equation of nonlinear theory is intimately related to
the rigid body equations and could be interpreted as Pois-
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son-Moyal brackets.!° Several of these concepts have further
been elucidated by Morris,® Corones,” and Dodd and Gib-
bon'' and others. Other related geometric or group-theoreti-
cal pictures of some of these equations also exist.!!

It is remarkable that in all these approaches either ge-
ometry or group structure or both seem to play a predomi-
nant role. This makes one suspect that these various ideas
could possibly be related to one another through a single
unified phenomenon. In this paper we wish to investigate
this interrelationship and show that these different views
could be seen as the many facets of a single picture of rigid
body motion along nonlinear strings or space curves. Con-
sider the dynamics of a homogeneous flexible nonlinear
string of constant length attached to some elastically yield-
ing support.' It could be studied starting from a suitable
Lagrangian as done by Broer.’* We can also consider the
string to be represented by a helical space curve. At an arbi-
trary point along the string an arbitrary rigid body could be
attached. Then the motion of the string and the body are
compatible, a consideration which is shown to result in the
solvable evolution Eq. (1) (Sec. 3). Further the Serret—Frenet
equations describing the space curves and the equations of
motion of the rigid body have an SO(3) structure. Both these
sets could be reduced to two Riccati equations, in terms of a
Darboux vector, having an SL(2,R ) structure. A further
transformation of these equations results in the eigenvalue
problem of the type (2) and (3) having an SU(2) structure.
Translating these results in the language of differential forms
of exterior algebra, one arrives at the notions of pseudopo-
tentials and prolongation structures in terms of simple geo-
metrical and physical quantities (Sec. 4). The associated fi-
ber bundle structure and connections could also be worked
out without difficulty. The space of variables defining the
string then forms the base space of the bundle, while the fiber
is defined as a space of variables of the rigid body. Thus a
unified picture emerges. This is satisfactory, as the study of
strings and rigid bodies, which lie at the heart of classical
physics, leads to the most recent developments of theoretical
physics.

To be self-contained we present the salient features of
the theory of space curves and rigid body dynamics in the
next section.
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0

FIG. la. A helical space curve in £°.

2. SPACE CURVES AND RIGID BODY DYNAMICS
A. Theory of space curves.’s

A regular space curve in E * is defined as the locus of the
end points of a vector R(x)=(r(x),7,(x),r5(x)) (x, <x <x,)
(see Fig. 1a) and that R(x) obeys certain regularity condi-
tions. The tangent vector is then identified with R'=d R/
dx = R, at the point 0'. From the definition of arc length s(x)
of a curve from a fixed point x, to a variable point x we have

0= [ [REREIdx, @
and so

ds(x) o,

S0 = IRE)I. )

Then it is clear that if we parametrize the curve with the arc
length itself (which we hereafter identify with x itself) the
tangent vector R’ becomes a unit vector,

R'(x) = e,(x). (6)
Now defining the total curvature as the rate of change

of the direction of the tangent vector with respect to a fixed
direction as R(x) moves along the arc,

Kp= f [R"-R"]V2dx, ™
the concept of curvature at each point x is introduced as
K(x) = |R"| = |ef]. ®)

As e{-e, = 0, a second unit normal called the principal nor-
mal is chosen such that
e; =«xe, (k>0). '©)

Then the right-handed unit orthogonal trihedran can be
completed by defining the third unit vector called the binor-
mal by

e, =e;Xe,. (10)
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FIG. 1b. A rigid body.

Our description could now be completed by introducing the
concept of torsion. From the definition of total torsion,
which is the rate of change of direction of e, with respecttoa
fixed direction as R moves,

Tr= fx' [e3-e3]'2 dx, ¢8))
the torsion a:“any point x is given by

T(x) = |ej|. (12)
From the relation e;+e; = 0, e;*e, = 0 it then follows that

e;= + 7e,. (13)

We choose the — sign for convenience. Since any other
vector can be expressed in terms of e,, e,, e;, we have
e, =ae, + be, + ce, (14)

and from the orthonormality relations we find a = — «,
b =0, ¢ = 7. Thus we have finally the system of three equa-
tions known as the Serret-Frenet equations,

€ 0 « 0fe
e; |l = —« 0 r|]e (15a)
¢ 0 —7 0l]e
or briefly, in matrix form
e =F,n)e, e =(ee,.e;), (15b)

which forms the basis of the theory of space curves. The
space curve is then defined uniquely within congruence, i.e.,
within rigid motions.

B. Rigid body dynamics

It is well known that a rigid body can be thought of as
consisting of a moving orthogonal trihedral of unit vectors
fixed to it (Fig. 1b). A complete description of the motion of
the body can then be obtained from a discussion of the mo-
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tion of the trihedral fixed to it. When the trihedral moves, let
the origin 0’ of it be displaced in time # (with respect to a fixed
coordinate system of origin 0) as per

%I;ER,=ae, + Be, + vey. (16)

Here a, 8, and y are specified functions. If now P is assumed
to be a vector from 0’ to any point fixed in the body, then the
position Q of this point with respect to the fixed system of
coordinates at origin O is given by

Q=R +P (17
Then the velocity of the point Q is
Q[th +P19 (18)

where R, is as given in Eq. (16). Thus the velocity of Q is the
vector sum of the velocity of the origin 0’ with respect to 0
and the velocity of Q if 0 were to coincide with 0" and the
rigid body simply rotated about it with an angular velocity ©
independent of the position of P;

P, = wXP, (19)
where
o= w8 + 0,8, + w;e;. (20)

Since the vector P is quite arbitrary, this includes also e, e,,
e;. Thus we have for the time variation of the trihedral

e, =wXe, (i=123), @2n
or
e, 0 Wy — o, e
e, | = [ — o, 0 a),} e | 22)
e, 0, —w 0 e

In matrix form we write this as

e, = G(w))e, e’ = (e,,e;,;). (23)
Further, we could introduce the quantities
3
e= > ;X (ij=123), 29
i=1

where X,, X,, X, are the (3 X 3) matrix representations of the
infinitesimal generators of the rotation group SO(3) obeying
the commutation relations

[XoX] = — € X g,k =12,3). 25)
Then Eq. (21) could be rewritten as

€, = [€,G(w)], (26)
where the G(w)) of Eq. (23) could be expressed as

G(w) = 0, X; + @,X, + 0:X;. 27

3. MOTION OF RIGID BODY ALONG A HELICAL SPACE
CURVE AND THE NONLINEAR EVOLUTION
EQUATIONS

Now we assume that the helical space curve corre-
sponds to say, a nonlinear string of constant length attached
to flexible supports. The arbitrary trihedral at the point R(x)
could now be replaced by an arbitrary rigid body, in lieu of
the properties quoted in Sec. 2 B. When the body is set in
motion, the string will also move as the body is constrained
to the string. Accordingly we assume hereafter R = R(x,?)
and e(x,t ) with x, the arc length denoting the position of the
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body along the string. Similarly the other quantities specify-
ing the system are also functions of both x and ¢, i.e., o (x,),
a(x,t), B (x,t), and p(x,t).

The compatibility of the motion of the string and the
body may be expressed with reference to the points Q of the
body (vide Sec. 2 B),

Q. =Q (28
Since Q = P + R, we have two separate conditions

P,=P, —e, . ,=¢, (=123) 29
and

R, ,=R,. (30)

Substituting now the Serret-Frenet equations (15) and the
rigid body equations (22) in the above, the following six
equations for the eight unknowns«, 7, @,, w,, w4, a, B, and ¥
result:

F.—G,+FG—-GF =0, (31a)
or
K, =03 — Ty, T, =0, +KOD|, 0, =KO — TW,
(31b)
and
a, 0 k 01| a 0
B, =|:—K 0 T]' Bl+ | ~2 | (32)
0O —7 O] ¥ — o,

Vx

Solving for Egs. (31) and substituting them in (32), a, 5, and
y may be obtained. The above six equations (31) and (32) can
be shown to be equivalent to the ones that were obtained by
Lamb’ for the motion of helical curves and by Corones for
the integrability of pseudopotentials. °® These set of equa-
tions are also essentially equivalent to the ones that were
obtained by Broer'* describing the dynamics of a string of
constant length through a variational principle involving
stress and strain of the string.

The system of equations (31) and (32) forms an incom-
plete set. So one can choose the w/’s in terms of « and 7
appropriately to obtain a complete set of partial differential
equaitons. This essentially means restricting the geometrical
shape of the curve to certain specified forms. For example,
with the specification

r= —g* &= —ry/2=constant, (33a)
g= — (K/Z)exp[ —i f (r =19 dx], (33b)
and
A= — (:‘/2)[(01 — fx (r — 7o), dx],

(33c)

B= -—C*= —%(w3+ia)2)exp(—if(r—ro)dx)
the AKNS system (1) is obtained.

In order to see these aspects more clearly, we can re-
write the scalar components of the Serret-Frenet equations
(15) and the rigid body equations (22) in terms of the Dar-
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boux vector
€y + ley, 5 3 2
= ————, ey +e+ey=1 (=123) 34)
(1—ey,)
One obtains the following set of Riccati equations in place of
(15) and (22):
2, = —irz;+ (k/2)z; + 1), (35)
z, = — oz, + Yo; + iw)z} + Yo, — iv,). (36)
[Similar sets of equations are obtained for the cyclic
combinations

ey +ley, ey + ey
=, 5=
1 —ey, 1—ey

the consequences of which are the same as with (35) and (36)
and so we do not discuss them here.] With the substitution

z,=0,/0,, (37
a particular solution of the system (35) and (36) is

K .

- I .

Vix = _2— ™, — 7 Uy, (383)

. K - I .

U = _2—' vy — 7 TUy,s (38b)
and

Uy, = Yiw 0, — Yo, + iw,)5,, (39a)

0y, = Hw; — i0,)0, — 3,0, (39b)
By making the substitution

B, =, exp[ %f(r— 7o) dx], (40a)

U, =0, CXP[ - % f (r — 7o) dx], (40b)

it is clear that the identification (33) results in the AKNS
system (1) and so also for the eigenvalue problem (2) and (3).

Finally the problem of determining the quantities e, 5,
and y from Eq. (32) is facilitated by the fact that the homo-
geneous part of the set of ordinary linear differential Eqs.
(32) is identical to the scalar component form of the Serret-
Frenet Egs. (15). Denoting

I'=(@pBy)" and 4= (0, —w; —w,)" (41a)
the solution to Eq. (32) which is

r,=Fr +4, (41b)
is given by (see Ref. 7)

r—= E[C + f dx' E " '(xh4 (x|, 42)

where C is a constant matrix and E is the solution of the
homogeneous part i.e.,

E.=FE, (43)

analogous to the scalar form of Egs. (15). Thus for E, a

(3 X 3) matrix could be constructed by knowing the solution
of the Serret—Frenet vectors. To solve for these vectors e, we
can use the fact that in all the soliton possessing evolution
equations, Biacklund transformations connecting two differ-
ent solutions through the solution of the Riccati equation
can be constructed.'® For example, in the case of the nonlin-
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ear Schrodinger equation®'®
iq,+ g +2|q|’g =0,
two solutions ¢ and q [see Egs. (33)] are related by

(44a)

¢ —g="(0+782z/(|z|* ~ 1)~6Xp[ - f’f (r—714) dX}~
(44b)

Similar results for all the other equations can be found
in Ref. 16. Thus knowing ¢’ and ¢, z, can be constructed.
Then it is a known result in differential geometry™ " that for a
given particular solution of z, and curvature « and torsion 7,
the curve may be referred to a rectangular coordinate sys-
tem. Similar results for 7, and 7, [discussed under Eq. (36)]
hold. With these results the matrix E is constructed and
hence the solution (42). Thus the complete dynamics of the
string and rigid body can be determined.

Another way of solving the equation of motion for the
vectors e,, is to put the time variation of these vectors as given
by Eqgs. (22) or (26) into the inverse scattering formalism.
Note that they are already in the form of Lax’s equation as
discussed by Hermann'® in connection with his Moyal-
Bracket construction.’ We illustrate the case of the nonlin-
ear Schrodinger equation (44a) in the following:

Equation (44a) corresponds to the situation in which
the angular velocity vector is of the form ®

o, =K /K—T) w,= —kKk, w,= —Kk7. (45)
Considering Eq. (21) fori =1,
e, =o0Xe = —e;/2Xe,, (46a)
as noted in Sec. 2 B, Eq. (26), could be put in the matrix form
e, = [e,0] (46b)
with
e’=1 e "= —¢, tre, =0, w= —e, /2
(46¢)
Now defining the operators
J
L=e,—, (47a)
' ax
d a*
B=a— +b—, (47b)
Ix Ox?
we form the Lax’s operator equation
L Bl @7

at
This results in the following condition for the unknown ma-
trix coefficients a and b:

b = e,be,, (48a)
a+ b, = e ae, + 2e,be,,, (48b)
a, —w =e,ae, +ebe, —ewe,. (48¢)

A solution of the set (48) is
a=e¢,, b=2e,. 49)
Thus (47) is in the form amenable to solution through
IST. A similar equation occurs for the spin vector of the

continuum Heisenberg ferromagnet systemn whose initial
value problem has been solved recently by Takhtajan." Ear-
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lier we had identified !** this with the nonlinear Schrédinger
equation. Once e, is known, e, and e, can be determined with
a knowledge of the curvature and torsion, the latter two
quantities being given in terms of the solution of the nonlin-
ear Schrodinger equation.

4. PROLONGATION STRUCTURE, CONNECTION
FORMS, AND FIBRE BUNDLES

We proceed to show how the above results may be relat-
ed to the abstract concepts of Wahlquist and Estabrook® and
Hermann® such as pseudopotentials, prolongation struc-
tures and connection forms of certain fibre bundle struc-
tures. This enables one to give a simple geometrical and
physical meaning of these quantities.

Firstly, we note that Egs. (15) and (22) of the space
curves and rigid body may be rewritten in the suggestive
form:

Y. = F(k,7) yY=(7X, + 0-X, + «X3)y (50)
and

Y. = Gw) Y=(@, X, + 0, X; + a3 X;)y, (51)
where

y= (el’e2’93)T’ (52)

and the matrices X, X,, X, are the SO(3) generators as dis-
cussed in Sec. 2 B Eq. (25). In the language of exterior differ-
ential forms** system (50)—(51) may be equivalently written
as the Pfaffian 1-form

2 =dy — Fydx — Gy dt. (53)

Then the 2-form
di2 = [(Fy—Fy,) —(G,y — Gy)] dxAdt
= {(F,— G, — [F.Gl}ydxAdt =0, (54)

in view of Egs. (31a) and (50) and (51). However Eq. (31a)
itself could be written in the one-differential form

2,=Fdx — [G — f [F,G]dx]dt. (55)

To this, an exact 1-differential dy may always be adjoined,
i.e., the original £2, given by (55) may be prolonged to a new

Qy=dy+ Fdx — [G - f [F,G]dx]dt (56)

without disturbing the original set of Eqs. (31a). This is sim-
ply due to the identity d (dy) = 0. Note the underlying SO(3)
structure of the matrices Fand G in £2,.

Now the structure £2 as given by Eq. (53) can be consid-
ered as a further prolongation of the new {2, as given by Eq.
(56), in which the linear pseudopotential y is brought into the
second and third coefficients on the right-hand side of (53).
The nomenclature pseudopotential® is due to the fact that it
cannot be now expressed as a simple quadrature. We also
note that the underlying SO(3) Lie algebraic structure is still
maintained. All these facts are exactly included in the phe-
nomena discussed by Wahlquist and Estabrook (See Ref. 5.
Secs. 2—4). In their procedure one searches for a suitable ¥
and G having these properties. Here they follow in a natural
way for the particular set of equations under consideration.
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Similarly the set of Eqs. (38) and (39) for ¥, where ¥7
= (¥,,0,) can be written in the form

U, =Fv=(X, + 0-X, + «X,)V, (57a)
U,=GV=(0,X, + 0, X, + o, XV, (57b)

where now the (2 X 2) matrices 71, X,, 5@ are the generators
of the SU(2) group [homomorphic to SO(3)]. The linear
pseudopotential ¥ is obtained from y through a nonlinear
coordinate transformation preserving the Lie algebraic
structure and hence the content of the theory remains un-
changed. A further one-parameter group of transformation
(40) results in the eigenvalue problem (2) and (3).

Finally the set of Riccati equations (35) and (36) may be
written as

Zix =ﬁ(K’T»zl)zl =1 —itX, + g—Xl - %XAI Z;s
(58a)
Zy = é(wj,Z,)Z,
= [ —iw, X, + 3o, + iw)X, — o, —iw,)X ]z,.

(58b)
Here the vectors
Xo=22L, x=22, x_ == (59
Iz, dz, dz,

are the generators of the SL(2,R ) algebra [which is again
homomorphic to SO(3) and SU(2)] satisfying the relations
[XoXi] =X, [XpX_(]=—-X_, [X,X_,]=24,
(60)
The z;’s are undoubtedly another equivalent class of pseudo-
potnetials as they were obtained through a coordinate trans-

formation from the e,’s. The prolongation structure associ-
ated with the quadratic pseudopotential z, is then

K . K
2,=dz, + [(— > + itz — 72,2)]dx

+ [$ws — iw,) + iz, — Yo, + iwy)z}]dt. 61
These results then naturally lead to an identification of"
the basic fiber bundle structure involved. This can be best
illustrated in conjunction with the results of Egs. (58)—(61).
A quadratic connection
@ =Ty + @12, + Dyzt (62)

may be defined, where

@y = % dx + Yo, — iw,)dt, (63a)

@) = —irdx — iw, dt, (63b)

@, = % dx + Y, + iw,)dt. (63c)
This induces the curvature forms

6, = d, + 2, A&y, (64a)

8, = d@, + @, \@,, (64b)

0, = d, + Dy A&, (64c)

having the basic SL(2,R ) structure (60). One verifies that
sectioning the forms, 8, = 0 (7 = 1,2,3) leads to the original
evolution equations (31a), by substituting (63) in (64).
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The underlying fiber bundle structure E is now appar-
ent. It is the differential manifold having the collection of
following objects:

(a) The base space B, covered by the family of coordi-
nate neighborhoods {x,tx,7,0,};

(b) The one-dimensional space of z,, called the fiber ¥;

(c) The bundle space E which is locally the topological
productof Band Y, i.e., E=B X 7Y;

(d) The mapping 7 of E onto B equivalent to the original
set of Egs. (31a);

(e) The structural group SL(2,R ) of the bundle that acts
effectively and differentially on Y.

These facts are illustrated in Fig. 2.

5. DISCUSSION

Starting from an elementary consideration of the mo-
tion of an arbitrary rigid body constrained to a helical space
curve and deriving the compatibility equations, we have ob-
tained the class of nonlinear evolution equations solvable by
the two-component inverse scattering phenomenology. The
very nature of the phenomenon under consideration reveals
the underlying group structures leading in a simple way to
the associated concepts of pseudopotentials and prolonga-
tion structures. A natural fiber bundle structure also
emerges thereby. It is thus possible to present a unified inter-
pretation of this class of solitons possessing evolution equa-
tions through a mechanism, which is within the realm of an
undergraduate laboratory experiment.
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FIG. 2. Schematic drawing of the fiber bundle having the SL(2,R ) group

structure. Y, is the fiber over u = (x,#) and ¢, , and ¢, , are the homeomor-
phisms from Y, onto the typical fiber ¥ with ¢, ,-¢ ;' defining the SL(2,R )
structure.
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Remarks on a theorem by G. Epifanio, “On the matrix representation of
unbounded operators” [J. Math. Phys., 17, 1688 (1976)]”
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Istituto di Fisica dell’Universita di Palermo, Palermo, Italy

C. Trapani

Istituto di Matematica dell’Universita di Palermo, Palermo, Italy

(Received 18 January 1979)

We give a generalization of a theorem concerning the change of basis for the matrix
representation of unbounded operators defined in a scalar product space. We introduce for the
proof a suitable structure which can be useful when one has to make operations with operators

defined between different scalar product spaces.

1. INTRODUCTION

In a previous paper,' one of us examined the problem of
the matrix representation of the elements belonging to the *-
algebra C,, of unbounded operators? in a scalar product
space D. It was proved that the problem is solvable in a way
analogous to that used for the bounded operators in a Hilbert
space H.

On discussing the problem of the change of basis, the
additional hypothesis that the operator associated with it be
an automorphism of D was made. Only in this case, in fact,
was it possible to know the nature of this operator and of the
matrix associated with it. The given statement’ holds true,
however, in general, as one can easily see by simple formal
matrix manipulations.*

It is obvious that if D is complete (Hilbert space) such a
difficulty does not arise, because each operator associated
with a change of basis in a Hilbert space is a unitary operator.

In this paper we prove that the mentioned theorem of
change of basis can also be stated in the general case giving
an exact meaning to all the operators and matrices; for this
purpose we introduce some simple structures which can also
be useful in similar cases and particularly when one has to
deal with operators defined between different scalar product
spaces and to make operations among them.

2. THE GENERAL THEOREM OF THE CHANGE OF
BASIS

For an easier understanding of the text, we will recall
some definitions and theorems given in a previous paper.’

Definition 1: Let D be a scalar product space. We say
that a linear operator 4 defined on D has an adjoint 4 * in D
whenever there exists a linear operator 4 * defined on D such
that

Vo.yeD (ApY) = (p.A*Y).
We call C), the set of the linear operators that are defined on
D and have an adjoint in D.

Theorem 1: For any scalar product space D, Cp, (en-
dowed with the natural operations) is a *-algebra of closed
operators.

Theorem 2: In order that the operator 4 belong to C,, it
is necessary and sufficient that the operator 4 be continuous

“Work supported by C.R.R.N.S.M. Istituto di Fisica, Universit di Paler-
mo, Palermo, Italy.
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in the weak topology o(D,D ) determined in D by the set of
seminorms

lp—l@¥) | |¢eD]

Let us introduce now the space C, ;.

Definition 2: Let D and D’ be two scalar product spaces;
we say that a linear operator 4 from D to D', defined every-
where in D, has an adjoint 4 * from D ' to D, if there exists an
operator A *, defined everywhere in D', such that

VoeD, Vp'eD', (dp.p’)=(p,A*p’).

We call Cj, ;,- the set of all linear operators from D into D’
and which have an adjoint from D’ into D.

It is easily seen that C;, ;,., endowed with the natural
operations is a linear space of closed operators and that the
mapAeCy, ,. — A *eCp. pprovides an anti-isomorphism be-
tween the spaces Cp, ,- and Cj,. ;.. As an application of a
known theorem® we have

Theorem 3: In order that the operator 4 belong to C), .
it is necessary and sufficient that the operator 4 be continu-
ous for the weak topologies o(D,D )—o(D',D").

We shall now discuss the problem of the matrix repre-
sentation of the operators of C/, ,. We omit the proof of
some theorems because they are analogous to those proved’
for Cp,. In the sequel we assume that the scalar product
spaces that we consider are separable.

Definition 3: Let A be a linear operator from the scalar
product space D into the scalar product space D', let (e,) and
(e.) be orthonormal bases, respectively, in D and in D’ and
M = (4,,,) an infinite matrix. We say that the matrix M re-
presents the operator 4 with respect to the bases (e,) and (e!)
ifY o=3 &, ecD forg' =Apwithep' =3Z*_ £ e!
€D’ we have

Er= S 4,6,
v=1

Using the linearity and the continuity of the operator
AeCy, ; stated in Theorem 3, the following proposition is
easily proved.

Theorem 4: Every operator AeC}, ;,- admits a matrix
representation with respect to any orthonormal basis (e,) in
D and any orthonormal basis (e/) in D’. The matrix (4 w) 18
defined by the relations

A,uv = (Aev’e;t)7 V’ﬂ = 1’2""-
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In this representation to the operator 4 *€C),. , we associate
the matrix

M*=(4 :fv)

Theorem 5: Let D and D’ be two scalar product spaces,
(e,)and (e)) orthonormal bases in Dand in D/, respectively, d
andd ' the linear manifolds of / * canonically isomorphic to D
and D’ respectively. In order that the matrix M = (4,,,) re
present an operator AeCy, . it is necessary and sufficient
that

(@) if (£).&d, then ( S 4, gv) ed’,

pneN

=1

with 4 * —A

uv

(b) if (§}).ened’s then ( Z AW g,t) ed,

=1
(© if (€).ned, and (§)),ned’, then

S Seaé=3 Se,

_I
,uvg;l.'
p=1v=1 v=1lpu=1

Besides, if we call .# , ;- the set of matrices satisfying the
conditions (a), (b), (c) and if we define the matrix operations
as usual, .# , ;. is a linear space and the map 4€Cy, ;.

—M (A )e.# , 4 provides an isomorphism of C,, ;,. onto
Mg

In particular if D = D' and (e,) = (e}), then .4 , ;.
= .# ,is a *-algebra and the isomorphism between Cj, and
M ,1s a *-isomorphism of *-algebras.*

Let us introduce a structure which allows us to prove
some propositions in a very simple way.

If D and D' are two scalar product spaces, we consider
the scalar product space D@ D, direct sum of D and D ;
operations and scalar product are defined in the usual way.

It is now possible to introduce the *-algebra Cp,, - of
linear operatorsin D @ D’ whichhaveanadjointinD & D ' It
is easily seen that every operator AeC, , ,- may be written as
a matrix of the type

. ( A 11 A 12 )
AZ] AZZ '
where 4,,€Cp, 4,,6Cp p, A, €Cp -, and A,,6C ..
We remark that to an operator 4€C;, we may associate
an operator AeC pe p» Such that A | D = A, but the operator

A is not uniquely determined; we choose the following
extension

~ A 0
i=(4 )
0 0

In an analogous way we can associate an operator of
Cp . p- to an operator of C, ;,, etc.

It is evident that these extensions provide an isomor-
phism of Cj, and C},. onto two subalgebras of Cj,,, - and an
isomorphism of C, - and C),. ;, onto two subspaces of
CD a D"

If (e,) is a basis in D and (e]) is a basis in D', then the
sequence (e, ®0,0®e,,), .~ is a basis for D@ D’, hence if d
and d ' are the linear manifolds of /> which are canomcally
isomorphic to D and D, the matrix representation of the
operators of C, . ,,- with respect to the basis
(e,®0,0@¢)), .~ provides a *-algebraic isomorphism of
Cpep-onto# . 4
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The introduction of the *-algebras Cp,, ,-and 4 ;. 4
allows us to “quietly” use the matrices and to make oper-
ations among them, because their nature is well determined;
in fact, it is known that generally these operations must be
made very carefully, for instance, the multiplication of infi-
nite matrices can also be not associative.

Theorem 6: Let A be an operator of C, and B an opera-
torof Cp, p; let # yand .# ; ;. be the *-algebra and the linear
space of matrices isomorphic, respectively, to Cp, and Cp, .
for the choice of the basis (e,) in D and (e/) in D’. Then the
operator BA belongs to Cj, - and for the matrices M (B),
M (A ) and M (BA) representing the operators B, A and BA,
respectively, in.# , ,.,, .# ,and .# , ;. the following relation
is valid:

MBAY=MB)M).
Analogously, if AeC}, ;,- and BeC),. j, then ABeC),. and
MAB)=M@A)M(B).

Proof: We remark only that the above relations are justi-
fied by the fact that .# ,, .# ,,, and .# , 4 are isomorphic
respectively to subalgebras and to a subspace of the *-algebra
M g

The definitions and theorems that we have given above
supply a simple way to prove the theorem mentioned® in the
Introduction which we recall for the reader’s convenience.

Theorem 7: Let (e,) and (e!) be two orthonormal bases
inthe scalar product space D, M (4 ) and M '(4 ) the matrices
representing any operator A€C, with respect to the bases
(e,) and (e!), respectively. Let U be the operator associated
with the change of basis, that is Ue,, = e/, if U is an automor-
phism of D, then the following relation is valid

M'A)=MU " HYMA)MU),

where (M (U)),,, = (Ue,.e,).

The hypothesis that U be an automorphism of D was
added because the space D being not complete, the operator
U associated with the change of basis has not, generally, the
whole space as domain. In other words, if we consider Das a
dense linear manifold of its norm completion D, the linear
manifold D' = UD is generally, different from D, but DnD’
does not reduce only to {0} [both the bases (e,) and (e;), in
fact, belong toit]. Notice that if we call d the linear manifold
of /2 canonically isomorphic to D for the choice of the basis
(e,), D' contains all vectors of D of the type 2A4,e., with
(A.),cvéd andthemapp =37 A e —@p =27 4,¢]
provides an isomorphism between D and D’ and so the map
AeC,—UAU ~'eC,, provides an isomorphism between C,,
and Cp..

Here the operator Uis well identified as a unitary opera-
tor from Dto D' and one can also characterize the associated
matrix.

Lemma 8: Let D be a scalar product space, (e,) a basis in
D. Let U be the isometric operator in D which changes the
basis (e,) into the basis (e/) of D. If we call D’ the space UD,
then the operators 4eC,, and UAU ~ '€C),. are represented,
the first with respect to the basis (e,) and the second with
respect to the basis (e]) by the same matrix.

Proof: We indicate with M ' the matrix which represents
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an operator of C,- with respect to the basis (e]) and with M
the matrix which represents an operator of C,, with respect
to the basis (e, ). Because 4 is an operator in D and U an
operator from D to D', the thesis of the theorem follows
easily from the relations below:

(M'(UAU —"),, = (UAU ~'ej,e[) =(4U ~'e,,U ~'e;)
= (Aev’ep) = (M (A ))pv'

We conclude now the discussion of the problem of the
change of basis, giving the generalization of the above theo-
rem to the case in which the operator associated with the
change of basis is not necessarily an automorphism of D.

Theorem 9: Let (e,) and (e) be two orthonormal bases
in the scalar product space D, M (4 )and M '(4 ) the matrices
representing any operator A€C, with respect to the bases
(e,) and (e,) respectively. Let U be the operator associated
with the change of basis, that is Ue,, = ¢/, then the following
relation is valid:

M'(4)=MU ~"YMA)MU),

where (M (U)),,, = (Ue,.e,).
Proof: By Lemma 8 and Theorem 6

M@A)=M@UAU ~Y=M'(U)M'A)M'{U ~ Y,

where

1675 J. Math. Phys., Vol. 20, No. 8, August 1979

(M'(U),,, = (Ue,.e,) = (Ue,.e,) = (M(U))

(M'(U )., =(U ele) = (U "e,e,)
= MU D>

uv?

hence
MA)=M'(U -""YMUAWM'U)
=MU " YM @AM (U).
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We show that the expansion coefficients for the normal and antinormal forms of a boson operator are

related by a simple transform.

1. INTRODUCTION

Among all possible expansions of an analytic boson op-
erator two forms are particularly useful—the normal and
antinormal expansion. Thus, given an operator

f@a") =Y. y.aavaa -,

one can use the commutation relation [a,a"] = 1 to bring all
the creation operators to the left of the destruction opera-
tors. This results in the [unique] normal expansion

f=fP@a= Y fPava )
rs
Similarly, one can obtain the (unique) antinormal expansion

f=fa,ah= S @a’a™, )
The two forms arise naturally in the coherent state represen-
tation.' Thus, the diagonal elements of fin this representa-
tion are given by the normal form

lalf|e> = f"aa*), 3)
and its projection-operator expansion by the antinormal
form

= Jd%f(")(a,a*) lay<a|. @

Again, the expectation value of f, in a state characterized by
a density operator p, is given by’

&> =t = [LEpaary aa)
— fd—:z—p"”(a,a*)f(”)(a,a*)

_ j__<d;" alpladf aat). )

The last line expresses <f > in a classiclike form—a subject of
a recent publication.’ Thus, according to Egs. (2) and (5), to
every analytic operator f(a,a ") corresponds a unique ““classi-
cal” function f “(a,a*) the integral of which over phase
space (Rea,Ima) with a positive weight (a|p|a), gives the
quantum expectation value {f>.

Having motivated our interest in the normal and antin-
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ormal forms of the boson operators, we shall now state our
result?

F= 1m0 k+ DIk +mVkL, (62)
k=0

DX, kv 1k + DI+ m)/k L.
(6b)

F = m)t 3 (-

k=0

Section 2 is devoted to the derivation of Eq. (6). The general
problem of convergence is not discussed. We assume that all
series involved converge, and that the order of summations
may be changed at will. This is trivially true for every finite
expansion. The series (6) may diverge but still be useful. For
example, by embedding the operator fin a one-parameter
family of analytic operators f (1 ), we may evaluate thesumin
Eq. (6) for A within the range of convergence. The appropri-
ate form of fis then deduced by the assumed analyticity. We
shall encounter such an example in Sec. 3.

2. DERIVATION OF THE NORMAL-
ANTINORMAL TRANSFORM

Our starting point is the diagonal matrix element of Eq.
(4), namely,

T R L ™
i
Using the identity*

[Cexp(— Ja >+ Braas@n =
T

ag*)rg(/)’ *),
(3

valid for every analytic function g(z), we can perform the
integration in Eq. (7) to obtain

Zf‘"’/)’ "B

‘Zf‘“’exp(— 1/3’!2)( a*)r[exp(ﬂ*ﬁ)ﬁ"]

—Zf“’)Z( )( )k'B(r—k)B*(SAk) 9

Here, [r,5] = min(r,s). Since the diagonal element £ "(3,5*)
determines f completely, we secure

Zf(n)a*rr s Zf("’ z ( )(Z)k gt — kgt — 5

= Zfﬁf:)a’a“, (10)
rs
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where the last equality follows from Egs. (1) and (2). In par-
ticular, we have

{nsl fr\/s
r ts f(s— k), (r—k)
aa’ = E (k)(k)k la a .

k=0

11

Note that the validity of Eq. (11) depends solely on the com-
mutation relation [a,a’] = 1.

We would like to invert the last relation, that is, to ex-
pand the normal monomial in terms of the antinormal mon-
omials. To this end, consider the operators

b=d', b= —a. (12)
Substituting in Eq. (11), we have

1(r

~ [rs ~
(-8 =S (k)(;c)k!b“_"’b =k 1y =k, (13)
k

=0

Since [b,6] = 1[and Eq. (13)is valid for any pair of operators
satisfying the boson commutation relations], we secure®

aa’ = Z (— 1)"( )( )k lgts—Rgftr—Fk), (14)

We note in passing, that Egs. (11) and (14) allow the calcula-
tion of the commutator [o”,a™] and the anticommutator
{a",a™} recursively in terms of lower commutators and
anticommutators.

Returning to Eq. (10), we shall rearrange the summa-
tions in the middle term as follows,

i i Zg(rsk)— Z z Zg(m+kl+kk)

= k=0l=0m=0
(15)
Hence,
S finata”
ILm
. m+ k\(I+ k .
=2[2ffn’+k,,+k( N )( . )k!]a”a- (16)

Equating the coefficients of ™2™ on both sides, we secure

our first result, Eq. (6a). To obtain the second result, multi-
ply Eq. (14) by £ and sum over r and s. Rearranging the
resulting summations on the right-hand side as in Eq. (15),
we find,

> fPava
m+k\(l+k
- 5[5 (7 A e
=3 fa'a™. an
ILm

Equation (6b) then follows from the last equality.

3. EXAMPLE
In order to illustrate our result, we shall work out the
following example. The normal expansion of e ~ **“ is given

by*
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—-/{aa_z —_1) TII (18)
We shall obtain the antinormal expansion for this operator’
in two ways: (a) by performing the summation in Eq. (6b),
and (b), by applying the transformation (12) directly to

e—/la a

(a) By Egs. (18) and (6b) the only nonvanishing antinor-
mal coefficients are

SE=FE =172 (= DR = Dk + Dk
k=0
(19)
In particular,
fP=3(=D e =D =€ forfet—1] <L

(20)

It is easy to establish a recurrence relation for £{¥:

D% —

1)k+1+1

fi =10+ )] 23—
k
[(k+’) ](k+l+1)

=+ D] e =P — (e =D,

Hence

S =10+ D] ' =y, 21
The solution of this recurrence relation with the initial con-
dition (20), is

=t -

— Aa'a

eM' /i (22)
Since e is an analytic function of A, this result is valid
for all values of 4.

(b) Applying the transformation (12) to Eq. (18), we
have

. -2 _ 1yl R

e/{bbzz(e - 1)(—1)’b’b’
7 :
— AU+ Bb) _ A ADD
Hence
- Ay
e“’”:e"{Z(l 16” )blbl‘ 23)
7 !

Since the last relation holds for any pair of boson operators,
we obtain (replacing also A by — A1)

Aa’ A (1—9/1)11 1
e “aze Z——lT—aa*. (24)

'W.H. Louisell, Quantum Statistical Properties of Radiation (Wiley, New
York, 1973).
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*Reference 1, p. 147.

’A. Lonke, J. Math. Phys. 19, 1110 (1978). The “classical” representation
[Eq. (5)} was apparently not known to Lonke. By a lengthy and mathemat-
ically inadmissible way, Lonke arrives at his central result [Eq. (3.10) of
his paper] which is correct. In view of Eq. (5), Lonke’s equation (3.10) is
equivalent to Eq. (6b) of the present paper. Indeed, it was the simplicity of
his result which encouraged us to find a simple way to establish the nor-
mal-antinormal transform (6a) and (6b).

1678 J. Math. Phys., Vol. 20, No. 8, August 1979

*See, for example, Ref. 3.

’An alternative way to invert Eq. (11) is to multiply Eq. (9) by e %, where
B = Re ™, integrate over g and replace in the resulting equation R by — x.
After the replacement, the right-hand side becomes a linear combination
of Laguerre polynomials L '(x), and their orthogonality property can be

invoked to accomplish the inversion.

‘Reference 1, p. 156.

"Reference 1, p. 159.

D. Shalitin and Y. Tikochinsky 1678



$S8505157 IMAPA,00DEC878/12—10

Markov fields in noncommutative probability theory on W*
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Many important results in ordinary probability theory do not have extensions in noncommutative
probability theory. Here we consider Markov fields, and we prove that new Markov fields may be
generated from old ones by means of multiplicative measurable operators. There is an analog of this result
in ordinary probability theory involving multiplicative functionals. It is envisaged that the result
established here would be of use in the study of interacting Fermion quantum fields.

1. INTRODUCTION

A noncommutative theory of integration on W *-alge-
bras, in which the measure is required to be unitarily invar-
iant and hence central, has been developed by Segal and his
school'”* and the theory has had important applications to,
for example, the theory of representations of locally compact
groups,* the problem of duality for unimodular groups,® and
the theory of relativistic quantum fields.*®* A new approach
to noncommutative integration, based on Stinespring’s no-
tion® of convergence in measure of measurable operators, and
which still requires the measure to be central, has recently
been presented by Nelson.’

An earlier version of noncommutative integration than
Segal’s is due to Dye'® who does not require the measure to be
central. However, Dye requires the W *-algebra on which
integration is performed to be finite and countably decom-
posable. A W *-algebra & is countably decomposable if any
collection of mutually orthogonal projections in & is at
most countable and & is finite if its identity if finite.'! It is
known'! that any W *-algebra of operators on a separable
Hilbert space is countably decomposable.

Segal’s and Dye’s versions of noncommutative integra-
tion have their respective limitations; we refer to Ref. 12 fora
critique of both versions. In Ref. 12, Gudder and Marchand
outline a theory of noncommutative integration which does
not require the sort of assumptions employed by Segal and
Dye.

In this paper, we employ the Gudder—Marchand for-
mulation of noncommutative integration in our study of
noncommutative Markov fields. We prove a theorem which
asserts that new Markov fields may be obtained from old
ones by means of multiplicative measurable operators. This
result is a generalization of the results in the theory of Mar-
kov processes which states roughly that new Markov pro-
cesses may be obtained from old ones by means of multipli-
cative functionals.'’ Our result has applications in
constructive quantum field theory' where Markov fields are
curently playing a role of no small significance in the study of
quantum fields.!*-'¢

2. CONDITIONAL EXPECTATION

In this section, we present, for completeness, a brief
summary of the basic ideas of noncommutative integration
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theory on a W *-algebra as developed by Gudder and Mar-
chand" (see also Ref. 17) and in the process, we establish our
notation and terminologies.

Inthesequel, Z willdenotea W *-algebra, withidentity
1, of operators on a Hilbert space I". We say that I" is the
underlying Hilbert space for % . We denote the commutant
of # by %' and write Z for the center Zn%' of % . In
almost any theory of noncommutative integration, the no-
tion of measurable operators, due to Segal,' is of fundamental
usefulness. We introduce this notion and other relevant con-
cepts below.

2.1 Definition: A closed, densely defined linear operator
t on I"is said to be affiliated to 7 if vt C tv for every unitary v
in %', If tis affiliated to %, we shall write ty 7.

A linear set A in I is said to be associated with &%
(symbolically An#) if v(A )C A for every unitary vin 4"

2.2 Remark: We note that if t is a bounded linear opera-
tor on I"and tn % then, by the double commutant theorem,
te .

2.3 Definition: Let A be a linear subset of I". Then A is
said to be strongly dense in I" with respect to Z if

() AnZ#
(ii) there is a sequence {A, { of subspaces of I', with
A,mZ such that A, CA, and

(iii) the projection operator of I” onto the orthogonal
complement A } of A, is a finite projection in 4 and A }10.
We say that {A,, | defines A.

2.4 Definition: An operator t on I is said to be measur-
able with respect to # provided that

(i) t9 % and
(i1) t has a strongly dense domain.

2.5 Remark: (i) If s and t are measurable with respect to
A, then so are s*, s + t and st, where the strong sum and the
strong product are employed here and * denotes the adjoint
operation.

(ii) In what follows, if ¢ isa W *-algebra of operators on
I, let p(¥) denote the collection of all self-adjoint projec-
tions in % .

2.6 Definition: A measure 7 on (I",4) is a nonnegative
mapping
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7:p(#)—R. =[0,00)
such that
(i) 7(0) = 0 and

(ii) 7(Zp, ) = 27(p, ), for any countable set { p, } of
mutually orthogonal projections in p(%7).

An integral T on (I',47) is a faithful, nonnegative linear
functional

7:4 —C, the complex numbers

such that the restriction of 7 to p(#) is a measure. Thus an
integral is a faithful normal nonnegative functional on #
since normality is equivalent to countable additivity, i.e.,
condition (ii) in the definition of a measure.

An integral ron (I,%) is a state if (1) = 1.

2.7 Remark: We note that we do not require here that r
be central as is usually assumed in Segal’s approach to non-
commutative integration.’

2.8 Definition: Let 7 be astate on (I, %). Then the triple
(I, 94 ,7) is called a (noncommutative) probability space.

If ris central (I, #,7) is called a probability gauge space
in the terminology of Segal.

2.9 Definition: Let (I, 73 ,7) be a probability space. Then
a sequence {a, | of measurable operators is said to converge
in measure to a measurable operator aif given 6 > O, thereisa
sequence {p,, | of projections in p(#) such that ||(a, — a)
X p, || <8 and 7(1 — p,)—0, where || - || is the operator
norm of A.

2.10 Remark: In the sequel L °(I", 4 ,7) will denote the
collection of all closed densely defined linear operators on I"
which are measurable with respect to %; L°(I",% ,r)is a %
algebra, with the adjoint operation for its involution, and
where the sum and product of operators are the strong sum
and strong product, respectively. We assume in the follow-
ing that L °(I", % ,7) is equipped with the topology of conver-
gence in measure.

Next, for acL (I, 4 ,7), let a = v|a| be the polar decom-
position of a, having |a| as its positive part and v as its partial
isometric part. Then, we denote by L ¥/, % ,7) the Hilbert
space completion of 4 in the topology given by the norm

|- 1I+ 2 —0,00),
ar| a .= [~(a])]"

We write L *(I",#,7) for the W *-algebra % and let || - ||,
be the operatornorm || - || of Z. Wealso write L (I, 4 ,7) for
the collection of all acL °(I",#,7) such that || a |}, = I
7(e(dA YA Y=7(|a|) < oo, where {e(A ):A isBorelin [0, w0)} is
the resolution of the identity for |a|. Notice that L '(I', % ,7) is
not necessarily a Banach space since || - ||, is not necessarily a
norm. However, L '(I",% ,7) is clearly a topological space.
We introduce next the notion of conditioning with re-

spect to a W *-subalgebra of 7.

2.11 Definition: Let 4 ,be a W *-subalgebra of the W *-
algebra % . Let ube an element of L '(I", % ,7). Then the con-
ditional expectation of u given %, is defined"' as the operator
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E@|%,)in L \(I',% o,7) satisfying
7(pE (u| % )p) = r(pup), for all pep(ZA,).
Notice that if 7 is central then the last equation becomes
T(pE (u|Z,)) = m(pu), for all pep(% ).
The conditional expectation operator E (-| Z,) is linear and it
possesses the following additional properties:
(i) £ (-| %) is a contraction of L (I, 4 ,7) onto
L\, 1),
(ii) E (u*| %) = E (| DB o)*, veL \(I'", % ,7);
(iii) E (-| 4 ,) is positivity-preserving:
V) E(|F,) =1,
WVE(EW|B)RB,)=EW|B,), uweL'I,R,7).

For a verification of the listed properties of E (-| 4 ), we refer
to Ref. 11.

3. GENERALIZED STOCHASTIC FIELDS AND
MARKOV PROPERTY

Let(I,% ,7)and L °(I", 4 ,7) be as in the last section. An
element of L °(I", % ,7) will be called an operator-valued ran-
dom variable. Let S (# %) be Schwartz space of C = functions
of rapid descent on % . We shall say that £ is an operator-
valued generalized random variable, with underlying prob-
ability space, (I, % ,7), provided that £ is a continuous linear
map from S (%) into the topological space L °(I", % ,7). By a
generalized stochastic field, with underlying probability
space (I',#,7) and indexed by S (%), we mean a noncom-
muting family

I = (fi>£ (£):feS (R 9)}
of operator-valued generalized random variables on
(I,% ,7). We denote by 57 2, the Hilbert space completion of
7 in the topology given by the norm:

|| : ” //’:%0_’[0’00)

EDIIED] - = (7€ O ).
Here7(|£ ()|?) = §& (e (dA ))A 2, where {e;(A ):AisBorelin
[0, 0)} is the resolution of the identity for | ( f)|. We remark
that if 7 is central, then L (I', % ,r) and %" * are H *-algebras
of closed, densely defined operators on I". We shall write 5%
for the collection of € ( f)e suchthat 7(|£ (f)|) < . Again
J¢7 is not necessarily a Banach space,

The linear functional:

m:7"'—C,

u—>m(u) = r(u),
is called the expectation functional, and m(u) is said to be the
expectation value of ue#™.

The sesquilinear functional

B:.% X % *—C,

(u,v) —>B (u,v) = 7(u*v),
is called the correlation functional. Notice that each ues#”
has an expectation value because #”' D #7 [since 7(1) = 1].
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The Hilbert space #7 is isometrically isomorphic to the
Hilbert space H (# %) which is the completion of S (% ¢) in
the norm topology given by

f'_’”f”H(w“) = 1€ (B)]] 7~

Next, let V| £ (£)], f<S (% %), be the polar decomposition
of £ (HeF7®, in which V,is the partial isometric part and
|£€ (f)] is the positive part. Let

£ =Lm eddA) A

be the spectral representation of |£ (f)|. For D an open subset
of %%, we denote by Z (D ) the W *-subalgebra of % generat-
ed by theset: { V;, e, (A ):f, geS(Z %), suppfCD, suppgCD
and A varies over all Borel subsets of % }. If C is an arbitray
subset of 77 9, we set

%(C)=DQCJ“Z(D),

where the intersection is taken over all open subsets D of %#¢
each of which contains C. We now introduce the following
notion of Markov property.

3.1 Definition: Let D be an open subset of %¢ with com-
plement D’ and boundary dD. We shall say that the general-
ized stochastic field #™ is Markovian or has the Markov
property if

E(u/#(D") =Eu|#@D))

forallveL (I, B (D),r)

3.2 Remark:

(i) If the generalized stochastic field 7™ has the Mar-
kov property, we shall say that it is a Markov field.

(i) For an example of a (noncommuting) Markov field
of relevance to relativistic quantum field theory, we refer to
Ref. 8.

(iii) For the rest of the paper, we shall make the follow-
ing assumptions, for simplicity:

(a) the W *-algebra % is generated by the partial iso-
metric parts and the spectral projections of the positive parts
of the canonical polar decomposition of the operators in
7 = (£ (O:feS (A D)};

(b) the net { Z(D): D is open in # “} is ordered under
isotonous inclusion (i.e., if D,, D, are open subsets of % 4
such that D,D D,, then Z (D)) is identifiable with a W *-
subalgebra of % (D,) and the W *-algebra & is the inductive
limit* of the directed set { Z(D): D is open in % ] of W *-
subalgebras.

(¢) if D is the union of open subsets {D, } of % ¢, then
(VA (D))" D% (D).

(3.3) Definition: Let 77° = (£ (f):feS (# )} be a Mar-
kov field. Then we shall say that 7™ is a regular Markov
field if for any open subset D of %7 ¢,

E (A (DuDy)| # (D ")) C % (D),

where D, is an arbitrary closed subset of D ’, the complement
of D, which contains dD.
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3.4 Remark: We note here that generalized stochastic
fields which satisfy assumptions (iii) (a), (b), and (c) of Re-
mark 3.2 abound in constructive quantum field theory. In-
deed, in the algebraic approach to quantum field theory,
these same assumptions are customarily made.'*'* Also, the
Markov field discussed in Ref. 8 is an example of a regular
Markov field.

4. MARKOV FIELDS AND MULTIPLICATIVE
OPERATORS

In this section, we show how to generate new Markov
fields from old ones. To this end, it is convenient to begin
with the following notion.

4.1 Definition: We shall say that a measurable operator
acl °(I", % ,7) is multiplicative provided that for every finite
open covering {D;}V_ | of % ¢, there are strictly positive op-
erators {a;},_, witha,eL° (I, Z(D;), 7),i=1,2,3,..,N
such that

a=aa,-ay,
where L %(I", % (D,),r) is the collection of all linear closed,

densely defined operators on I" which are measurable with
respect to Z(D,).

4.2 Remark: Next, for ¢ any positive element of
L =(I",#,7), let 7. denote the functional on &% given by
T(u) = m(uc), forall ne#.

Then clearly 7, is a linear functional which is also positive if
7 is central or if ¢ belongs to Z. Furthermore 7 is bounded
for

| 7(u)]

Il = sup | ——=—
oucs \ |l

_ | 7(uc)|

omtuc s |ul,

7l 1[ull.. llell.

llefl .

=
Os£ue 7

= lIlle]l ...

Hence convergence in measure with respect to 7 implies con-
vergence in measure with respect to 7.

4.3 Theorem: Let 7° = {£(f) : feS (Z 9)] be a regular
Markov field over the probability space (I,4,7). Let
acL *(I',Z,7) be a right-invertible multiplicative measur-
able operator satisfying 7(a) = 1, and define 7, as in the fore-
going. Then #® = {£(f) : f&S (R %)} is a Markov field over
the probability space (I, 4,7, ).

4.4 Remark:

(1) This theorem is a noncommutative extension of what
happens in the theory of Markov stochastic processes where
new Markov processes are generated from old ones by means
of multiplicative functionals."

(i1) We prove the theorem below after recalling a rel-
evant result.
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4.5 Proposition:

(i) Let #° = {£ (D) : fS (Z# )} be a regular Markov
field indexed by S (Z %), let D be an open subset of % 9, and
let D, be a closed subset of the complement D ' of D contain-
ing dD. Then

E(#(DuDy| #(D")) = B(Dy).

(ii) Let D, D,, and #° = (£ (f) : feS (# %)}
be as in (1), but with 5™ not assumed necessarily a (regular)
Markov field but satisfying (iii) (c) of Remark (3.2). Then

B (DuD,) = (% (D )U%(Do))”

Proof:

(ii) Since D, DD, the set DuD, is closed in % “. Let
[D,]7_, beasequence of open subsets of # ¢ decreasing to
D,. Then { DuD,}_ ,isasequence of open sets decreasing to
DuD,. By assumption (iii), it follows that

A(DUD,) = (BDWAD,))"

Next, recall that if € and {7 ,} *_, are W *-subalgebras of
%A, where { &« ,}*_ | forms a decreasing sequence, i.e.,
&, DA, +ph= 1,2,...,00, then

(7 e =ceut oy
n=1 n=1
Hence

ADUDY = n (BDWHD,))"
1

—(ADW n HD)
n o=l

= (B (D)YWH (Dy))"
Thus 4 (DUD,) is generated by % (D YuZ (D,). Finally, the
proof of (i) follows trivially from (iii)(c) of Remark 3.2. This
concludes the proof.

4.6 Remark: We wish next to give a proof of Theorem
4.3.

Proof of Theorem 4.3:

There are two probability spaces (I, % ,7) and
(I",4,1,) for consideration. Denote by E (-| ¢ ) and E, (:|¢')
the conditional expectation operators with respect to the
states 7 and 7, , respectively, where % is a W *-subalgebra of
A

Let D be an open subset of % ¢ with complement D ' and
boundary dD. We wish to prove that

E,(u|#(D")) = E,(u| # (D))

for all ueL "(I", % (D),r). To establish this, we need equiv-
alently, to show that there is a uniquely determined

i =E,(u|Z[D")in L,%(D")r), for every

nwel (I, % (D),r), such that

7.(pip) = 7,(pup), forall pep(#(D")),
i.e.,

4.7 r(piipa) = r(pupa), for all pep(H(D")),
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and, furthermore, that i does in fact belong to % (dD). Since
the measurable multiplicative operator a belongs to Z, 4.7 is
equivalent to

4.8 r(piiap) = 7(puap), for all pep(Z(D")). Let D,be
an arbitrary open subset of % ¢ containing 3D. Then the
triple { D,D,,D "} is a finite open covering of % ¢, where D "is
the interior of D '. Then sinceais a multiplicative measurable
operator, we have that there are positive measurable opera-
tors {a,,a,a,] with a,cL (I, B (D),r), a,cl °({",H (D),7),
and a,eL °(I",% (D ),7) such that

49a =a,a.a,.

Employing 4.9 in 4.8, we have

7(piia,a.a;p) = 7(puaa,a,p) for all pep(#A(D"))
or
7(pE (a,a.a,| 77 (D ))p)
= 7(pE (ua,a,a;| Z(D"))p), for all pep(#(D")).
Hence the sought-for @i must satisfy
E (na,a,a,|# (D ")) = E (na,a;a,] Z (D ")).

Using the properties of the conditional expectation operator,
we have, since a,eL (", % (D'),7) and ii also belongs to
L°(I",% (D "),7) when it exists, that

E (a,a,| 7 (D ))a, = E (ua,a,| Z (D ))a;.

Since a is right-invertible, so is a,. Hence

4.10 QE (a,a,| Z (D ")) = E (va,a,| A (D")).

But the right-inverse of E (a,a,| Z (D ")) is a densely de-
fined measurable operator in L (", % (D "),7). Hence, we
have

4.11 i = E(va,a,|# D "ME (aa,| Z(D"))]*, where
the inverse here is the right-inverse of the indicated operator.

Set DynD ' = D¢, where D, is the closure of D,.

Since #° = {£ () : feS (# 9] is assumed to be a regular
Markov field on the probability space (I, #,7) part (i) of
Proposition 4.5 is available. Applying the latter result with D
and D “ replacing the subsets of 7 ¢ occurring there, it fol-
lows that [E (a,a,| 2 (D ))]" and E (ua,a,|# (D)) are in
L(I',# (D ),7) which is contained in L °(I", % (D,), 7). Since
D, is an arbitrary open subset of 7 ¢ containing dD we con-
cludethatnisin L °(I",% (3D ),7). Thus defining iby 4.10 we
are assured of its existence, together with the desired mea-
surability properties; furthermore, i defined in this way sat-
isfies 4.7. The uniqueness of 0 is trivial. This concludes the
proof.

4.12 Remark: (i) The proof shows that, in fact,

E,(u|#(D") = E (va| (D ))(E (a| Z(D ]
for any right-invertible positive multiplicative measurable
operator g in L *(I",Z,7) such that 7(a) = 1, as is clear from
4.10 by right-multiplication by a,, which belongs to
LoD "),7).

(ii) It is hoped that Theorem 4.3 would be useful in the
Euclidean approach to interacting fermion quantum field
theory.
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A note on the Lorentz transformation
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Using Lie theory of one-parameter transformation group, we show that the (linear) Lorentz
transformation can be embedded into a class of nonlinear transformations.

1. INTRODUCTION

Recently, in a series of papers, ' ° the author has investi-
gated a connection between Lie’s theory of one-parameter
groups and autonomous nonlinear systems of differential
equations. For a given system of linear differential equations
X = £ (x) = Ax (where A4 is an n X n matrix with constant
coefficients), the nonlinear system x = 7(x) is constructed
viatherelation [X, Y ] = f(x)Y. [X, Y] denotes the commuta-
tor (Lie bracket) of the C *-vector fields (what in physics are
called infinitesimal generators) X and Y. f(x) is a smooth
function. The vector fields X and Y are written in local co-
ordinates as X = &, d/9x, + - + £, d/9x, and
Y=17,8/3x, + -+ 7, d/dx,. In the cited papers the de-
scribed approach has been applied to systems containing pe-
riodic orbits and limit cycles. For example, the equation of
motion of the harmonic oscillator x; = x,; %, = — x,is as-
sociated with the vector field X = x, d/dx, — x, /3x,. The
vector field Yobtained via the equation [X,Y] = £ (x) Y leads
to nonlinear systems x = Y (x) which contain limit cyclces.
The limit cycles themselves are described by the equation of
motion for the harmonic oscillator.

In the present paper we apply the described approach to
an autonomous system of differential equations which is im-
portant in the theory of relativity. This means, we study the
system of linear differential equations (¥, = x,, X, = x,), the
associated vector field X = x, 3/9x, + x, d/9x, and con-
struct the most general vector field ¥ which commutes with
X. Then the physical meaning of the vector field Y (and its
associated nonlinear system of differential equations) is
given.

2. MATHEMATICAL PRELIMINARIES

First of all, let us briefly recall some well-known results.
Consider the system

2.1
with X, = dx,/dA. Let M = R ? (M = manifold). The system
of differential equations (2.1) induces the vector field

X = x, d/9x, + x, 3/Ix,. The vector field X is complete on
M = R 2 Moreover, the vector field X has the following
properties. Let X = x, 3/9x, + x, d/dx, and let L, (-) de-
note the Lie derivative of a geometric object (i.e., function,
vector field, tensor field) with respect to X. Then

Ly —x) =X} —x) =0, (2.23)

3 3 3 3
L 2 x, 2L = |xx, 2 21 =0,
"(x‘ax, XZaxz) [’xlax,+xzax2
(2.2b)

X, =X, X=X,
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L,(dx,ANdx,) =0, (2.2¢)
Ly(dx,®dx, —dx,®dx,)=0. (2.24d)

When we apply the usual rules of the Lie derivative (com-
pare ® and references herein), the relations (a) through (d)
can easily be obtained. Equation (2.2a) tells us that the quan-
tity x2 — x3 is the (global) first integral of X. From Eq. (2.2a)
it follows that Xf (x2 — x3) = 0, where fis a smooth function.
The vector fields x, d/9x, + x, d/3x, and x, 3/9x,

+ x, d/0x, generate one-parameter groups @, and ¥,, re-
spectively. Because of Eq. (2.2b), it follows that
P,o¥, = ¥, oD, Equation (2.2¢) tells us that the flow @,
(one-parameter group) generated by X is an area-preserving
mapping. Finally, the vector field X is a Killing vector field
with respect to the (2,0) tensor field g = dx, ® dx,

— dx, ® dx, [Eq. (2.2d)]. Note that the vector fields d/dx,
and d/dx, are Killing vector fields (with respect to g), too.
The Killing vector fields lead to conserved quantities. More-
over, the vector fields {3/9x,, 8/9x,, x, /3x, + x,0/9x}
form a Lie algebra as it must be. The solution of the system of
differential equations (2.1) is given by
X, = x,o coshAd + x,, sinh4, x, = x,, coshd + x4 sinh4
[*10 = X,(A = 0), x5 = x,(A = 0)]. In other words, we
have the one-parameter transformation group ®:R*Xx R
—R%:x,—»x, coshi + x, sinhd, x,—»x, coshi + x, sinhA.

The most general vector field ¥ which commutes with
X (i.e.,[X,Y] = 0) has the form (in local coordinates)

Y= [0 AGE =) 45 £ —xd)] =2
Jx,
b ol —x2) 4 x, 16— )] 8‘3 eX)
X5

where both f; and £, are smooth functions. The method for
obtaining the vector field Y is well known. ’~'* Let us de-
scribe a rather different method for obtaining the vector field
Y. To obtain the vector field ¥ we consider the Abelian Lie
algebra { X, I = x, d/9x, + x,3/9x,} and the rule [4, /B]
= (Af)B + f[4,B]. Since Xf(x3 — x3) = 0, we find that
[X, /ix} — DX + fox —x3) I] = 0. (2.4)
Let M = R 2. The vector field X generates a one-param-
eter group of transformations. On the other hand, in general,
the vector field Y is not complete. Obviously, whether or not
the vector field Y is complete depends on the form of both f;
and f,. The condition [X,Y ] = Ois an integrability condition.
The geometrical meaning is that the flow ¢ (associated
with X ) and the (local) flow I',, (associated with ¥') commute
(®,o, = I',oP;) is an appropriate domain.
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The vector field Y is associated with the autonomous
system of differential equations

X = x, foxt — x3) + xzfl(x% — X3
X, = x, fo(xi — x3) + x, f1(5 — x3). 2.5)
Let us investigate a particular case, namely f,(x,,x,) = 1 and

Sfo(x1x5) = X2 — x3 + k, where keR. Now we discuss the
nonlinear system (X, = dx/du)

X,=x2+x,(x%—x§+k), x'2=x,+x2(x%—x§+k).

2.6)
The associated vector field
Y= (xz +x,(x2—x3+ k)> 9
ox,
2 2 a
+ (x1 +x,(x7 — x5+ k )) — 2.7
dx,
has the properties:
Ly(8 —x3 + k) = 2063 — x3)(x2 — 53 + k), (2.83)

Ly(dx, Ndx,) = 2((x3 — x3 + k) + X% + x3)) dx, Adx,,

(2.8b)
Lyg=2(x{—x3+k)g
+ 4x3 dx, ® dx, + 4x3 dx, ® dx, — 4x,x,
X (dx, ®dx, + dx, ® dx,). (2.8¢)

If we consider the equation x} — x3 + k = 0 (hyperbola),
then the right-hand side of Eq. (2.8a) vanishes.

The equation x? — x5 = — k (k50) defines the hyper-
bola. If k£ = 0, then we obtain the straight lines x, = + x,
(the asymptotes). The hyperbola can be viewed as a one-
dimensional integral manifold of the system given above
[Eq. (2.6)]. Using the ansatz 7 = x} — x3, we get the differ-
ential equation

a _ PP+ k).
du

2.9)
This equation can easily be solved. Let k = 0. Then the u
independent solution (i.e., d*/du = 0)is given by (*)* =0,
i.e., x2 — x3 = 0. The u dependent solution (local flow) is
given by 7 = r2/(1 — 275 12). As i—> o0 (OF p—> — o0 ) We
have ¥ = Oor x} — x3 = 0. Now let k&5£0.Then we find theu
independent solution #(r* 4 k) = 0 or (x3 — x3)

X (x? — xj + k ) = 0. The u dependent solution (local flow)
takes the form

_ rokexpkp)
(1 — exp(2kp)) + k

If 2 =0, then ¥ = 0. If J = — k, then * = k. Now let
ri#0and i~ — k. Let k>0. Asp— o0, wefind 7 = — k.
Asp— — o, we find 7 = 0. Now let k <0. As u— o0, we
find” =0. Asu— — «o, wefind ¥ = — k.
To sum up, as u—» o0 (Or u— — o) the solution of the
nonlinear equation either tends to the hyperbola
(x} — x5 = — k) or to the straight lines x, = + x, accord-
ing to the value of k and to the initial values x,, and x,.
To complete the mathematics, we put tanha = x,/x,
and we find thata = 1. It follows that @ = @, + u. Note that
x—arctanhx is a multiple valued function.

(2.10)
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3. PHYSICAL SIGNIFICANCE

Let us now discuss the physical significance (obviously
in a speculative manner) in the theory of special relativity of
the described approach. We make the assumption that the
reference frame X ' is moving with a uniform velocity v along
the X axis of the reference frame 2. A 4-vector 4 is defined as
any system possessing components 4, 4, 4,, A; which be-
have like the space—time coordinates ct, x, y, z under Lorentz
transformation:

(ct’) _ ( ¥ - 7/,6’) (ct)’ a.1)
x - v /\x

wherey' =y, 2 =z, y=1/(1 =B and B=v/c(c =
speed of light). Examples of 4-vectors are the 4-velocity and
the 4-momentum. The 4-velocity can be written as (cy,uy),
where u is the usual three-dimensional velocity vector. If we
multiply the 4-velocity by mqc (m, rest mass), we obtain the
momentum 4-vector (mc’,muc) = (E,p.c,p,c,p.c) with

m = myyand p, = mu,. Eis the total energy. The invariant
scalar product of two 4-vectors, say 4 and B, is, in Min-
kowski coordinates, AB = — A,B, + A,B, + A,B,

+ A,B,. The scalar product of the 4-velocity with itself is
given by — c? (timelike). Consequently, the scalar product
of the 4-momentum with itself is given by — mZc*. It follows
that

E? — p’c* = mic, 3.2
where p = (p,,p,,p,)- A photon has zero rest mass (m, = 0),
and therefore E 2 — p’c? = Oin this case. E > — p*c” remains
invariant under Lorentz transformations. In a closed sys-
tem, with no energy or matter entering or leaving, Eq. (4.2)
connects the principle of conservation of energy with that of
conservation of momentum. m, and ¢ are constants. In other
words, the momentum 4-vector of a closed system does not
change inlength or direction, no matter what happens inside
the system,

Consequently, we identify the quantities x, x,, and A as
follows: Weputx, =4, x, =A445=4,, 4}, =A45,),
coshA = 7, and sinhd = — By. It follows that A = arc-
sinh( — B%). If we consider the 4-momentum, then we addi-
tionally put k = m2c*. Let us consider the nonlinear system
[Eq. (2.6)). Let x, = x and x, = ct. Instead of
x?—c?=x3—ctl wehave

e = (xcz) —c*t é)k exp(2kut)
(x5 — 51 — expQhp)) + k-

The properties of this solution have been widely discussed in
Sec. 2. Now let x, = p,c and x, = E. In the theory of special
relativity we have E > — p’c® = m{c*. The nonlinear system
describes a ““dissipative system” (damping terms), i.e., the
divergence of the vector field Y does not vanish. We obtain
divY = 2(x? — xj + k) + 2(x} — x3). However, as 1o,
the system is no longer dissipative and it is described by

X, = X,, X, = x,. Hence we describe an open system with
energy or matter entering or leaving the system. Whether
energy (or matter) enters or leaves the system depends on the
form of the functions f, and f;. Note that the scalar product of
Yis given by E* — pZc* + (E? — p2c®) (E? — p*c® — micY).

3.3)
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The inverse problem for random sources?
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The problem of deducing the statistical structure of a localized random source p (r) of the reduced
wave equation from measurements of the field external to the source is addressed for the case
when the measurements yield the autocorrelation function of the field at all pairs of points exterior
to the source volume and the quantity to be determined is the source’s autocorrelation function
R,(r\,r;) = {p*(r))p(r;)>.This problem is shown to be equivalent to that of determining R, from
the autocorrelation function of the field’s radiation pattern and is found, in general, not to admit a
unique solution due to the possible existence of nonradiating sources within the source volume.
Notable exceptions are the class of delta correlated (incoherent) sources whose intensity profiles
are shown to be uniquely determined from the data and the class of quasihomogeneous sources
whose coherence properties can be determined if their intensity profiles are known and vice versa.

1. INTRODUCTION

An inverse problem of interest in optics and acoustics is
that of deducing a deterministic source p(r) of the reduced
wave equation

(V2 + ky(r) = — 4ap(r) (1.1)
from measurements of the field # at points external to the
region of localization V of the source. In the most favorable
case ¢ will be exactly known everywhere outside V. In this
case the inverse problem reduces to that of determining p(r)
from the value of its Fourier transform

) = f % p(e)e~ " (12)

evaluated in k space on the surface of a sphere centered at the
origin (k = 0) and of radius k,, . This conclusion follows from
the fact that ¢(r) is uniquely determined everywhere outside
V by its radiation pattern,’ which, in turn, is equal® to the
above stated boundary value of the sources transform; i.e.,

Y(r) ~plk)e™ /r,  (kgr—o0), (1.3)

where f =r/r.

The inverse problem described above does not admit a
unique solution due to the possible existence of so-called
nonradiating sources® within the source volume. Such
sources possess Fourier transforms which vanish identically
when |k| = k, and thus produce fields which vanish every-
where outside their region of localization. It follows that
solutions to the inverse source problem can be determined
only up to an unknown additive nonradiating part which
must be specified by information other than field data.

In many applications the source p(r) and, hence, the
field ¥(r) will not be deterministic (i.e., perfectly coherent)
but rather will be realizations of random processes that are
characterized by the source autocorrelation function*

*Preliminary results of this investigation were presented at the 1978 annual
meeting of the Optical Society of America. [Abstract Th74, J. Opt. Soc.
Am. 68, 1421 (1978)}
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R, (r r) = (p*(r)p(ry)) (1.4)
and higher order moments. Within this context of “random
sources” the inverse problem becomes that of deducing the
statistical structure of the source from physically realizable
measurements of the radiated field.

In this paper we address the inverse problem for ran-
dom sources for the case when the measurements yield the
antocorrelation function® of the fieid

I (ry,r5) = (P*(r)Y(ry)) (1.5)
at all pairs of points exterior to the source volume and the
quantity to be determined is the source’s autocorrelation
function R (r,,r,). In Sec. 2 it is shown that the autocorrela-
tion function of the field is uniquely determined everywhere
outside the source region by the autocorrelation function of
the radiation pattern and vice-versa. This latter quantity is
shown to be equal to the (six-dimensional) Fourier spectrum
of the source autocorrelation function®

P (ky,ky) = (p*(k )o(k,)) (1.6)

evaluated on the four-dimensional surface |k, | = |k, |

= k. Theinverse problem for random sources is thus found
to reduce to that of determining @ (k,,k,) fand, hence,

R (r;,ry)] from its boundary value on the surface

k[ = [k, | = k.

It is shown in Sec. 3 that it is not possible in general to
uniquely determine the spectrum ¢ (k, k,) from its bound-
ary value as determined by the autocorrelation function of
the radiation pattern. Thus, like its deterministic counter-
part, the inverse problem for random sources does not in
general admit a unique solution. A notable exception is
found to be the class of delta correlated sources for which the
intensity profile (|p(r)|?) can be uniquely determined from
the known boundary value of @ (k,,k,).

Finally, in Sec. 4, the inverse problem is formulated for
so-called quasihomogeneous sources.” These sources are lo-
cally statistically homogeneous and are characterized by an
autocorrelation function which factors into the product of
the intensity profile of the source with a normalized autocor-
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relation function g(r, — r,) of a strictly statistically homo-
geneous source. It is shown for such sources that if either the
intensity profile or the normalized autocorrelation function
g(r, — r,) is known, the other can be uniquely determined
from the autocorrelation function of the radiation pattern.

2. FORMULATION OF THE INVERSE PROBLEM

Throughout this paper we shall restrict our attention to
that class of random sources whose realizations p(r) are
piecewise continuous and localized within a volume V
which, for convenience, we take to be a sphere of radius R,
centered at the origin. The field generated by any such real-
ization is identified with that particular solution of Eq. (1.1)
which behaves as an outgoing spherical wave at infinity, i.e.,
such that

WO~ g™ /r, (kgr—w), @
where J(f) is the radiation pattern of the field evaluated in
the direction f of the field point r = rf. The appropriate solu-
tion of Eq. (1.1) satisfying the asymptotic condition (2.1) is

WO = [ & pere /v,
Vv

It is easily verified that the field given in Eq. (2.2) satisfies the
asymptotic condition (2.1) with the radiation pattern given
by

2.2)

00 = [ 4% ptere ™ = plked),

_ Asmentioned in the Introduction the radiation pattern
¥(f) not only yields information about the far field but, in
fact, uniquely specifies ¥(r) everywhere outside the source
volume and vice versa.2 This one-to-one correspondence be-
tween the radiation pattern and the value of the field outside
V is extremely important for the inverse problem and, thus,
will now be established with the aid of the well-known multi-
pole expansion of the field. This expansion, which can be
obtained by expanding the Green function appearing in Eqg.
(2.2) into a series of spherical wave eigenfunctions of the
reduced wave equation, converges everywhere outside V
(i.e., for r> R,) and is given by*

=35 S arh kDY 60.8).

n=0m= —n

(2.3)

(2.4)

Here A,(kr) is the spherical Hankel function of the first kind
of order n, Y 7'(6,¢ ) is the spherical harmonic of degree n
and order m, and (r,6,4 ) are the spherical polar coordinates
of the field point r. The expansion coefficients (multipole
moments) @) can be determined from the value of the field
given over the surface of a sphere of radius R > R, by means
of the formula

m

I m o N
an = ——hn(koR)fvd(ﬁ fo d6 sind YROY ™ (6,4).
@2.5)

It follows from Eqs. (2.4) and (2.5) that there is a one-
to-one correspondence between the set of multipole mo-
ments {a'} (n=0, 1,..;m= —n, —n—+ 1,..,n) and the
value of the field specified at all points lying outside the
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source volume. Moreover, by asymptotically expanding
both sides of Eq. (2.4) we find that

=15 3 avroe

ko n=0m= —n

(2.6)

from which we conclude that there is also a one-to-one corre-
spondence between the set of multipole moments and the
radiation pattern and, hence, between the radiation pattern
and the value of the field at all points lying outside V.

The deterministic inverse source problem is that of de-
ducing the source p(r') from the field ¥(r) specified every-
where outside the source volume. This problem thus consists
mathematically of solving the integral equation (2.2) for
p(r’) in terms of the value of y(r) specified everywhere out-
side V. However, the one-to-one correspondence between
the value of the field outside ¥ and the radiation pattern
shows that this problem is equivalent to that of determining
the source transform g(k) for all values of the wave vector k
from its boundary value g(k, ) as given by the radiation
pattern via Eq. (2.3).

When the source p(r) is a random process the inverse
problem becomes that of deducing the statistical structure of
this process from physically realizable field measurements
performed exterior to the source region. In practice, espe-
cially at optical frequencies, the field measurements will con-
sist of interference experiments from which the autocorrela-
tion function I' (r,r,) [cf. Eq. (1.5)] can be determined. In
the ideal case, which we address here, I (r,,r,) will be known
for all pairs of points lying outside the source volume. It is
natural then to define the inverse problem for random
sources to be that of deducing the source autocorrelation
from this information. Mathematically, this consists of solv-
ing the integral equation

o) = JVd 3r{f dr, R ()
Vv

e*”"n‘ﬂ —ri|
.

iko|ry — 3

Q2.7)

[ro—rz| |y =i

for R (r},r3) in terms of /" (r,,r,) given for all pairs of points
outside ¥, and thus is completely analogous to the determin-
istic problem of inverting Eq. (2.2) for p(r')given ¢(r) every-
where outside V.

It follows from Egs. (2.4) and (2.5) that the autocorrela-
tion function of the field at all pairs of points external to the
source region is uniquely specified by the various statistical
moments {a""a"™"> and vice versa. In virtue of Eq. (2.6) a
similar one-to-one correspondence exists between these sta-
tistical moments and the autocorrelation function
{yY*(#, W(#,)) of the radiation pattern. We conclude then
that the autocorrelation function of the field is uniguely deter-
mined everywhere outside the source volume by the autocorre-
lation function of the radiation pattern and vice versa. It fol-
lows that the inverse problem for random sources reduces, in
analogy to its deterministic counterpart, to that of deducing
the autocorrelation function of the source from the autocor-
relation function of the radiation pattern.

A more complete analogy between the deterministic
and random inverse source problems is obtained by intro-
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ducing the sixfold Fourier transform of the source autocor-
relation function

& (kl’kz) — Jd 3rlfd 3r2 Rp(l'pl'z)e —i(kyr;, — kyry) (28)

This quantity is readily shown to be equal to the autocorrela-
tion function of the Fourier transform of the source

P (ky ky) = (p*(k,)p(k,))- (2.9)
The inverse problem for random sources thus becomes that
of deducing & (k,,k,) for all values of the wave vectors k k,
from its boundary value

D (kof ko) = (4@ )P)).- 2.10)
as given by the autocorrelation function of the radiation
pattern.

3. NONUNIQUENESS IN THE INVERSE PROBLEM

In both the deterministic and random inverse source
problems the data has lower dimensionality than what is re-
quired to uniquely specify the source in question. For exam-
ple, in the deterministic case the data consists of the prescrip-
tion of an unknown function g(k) of three variables (say the
Cartesian components of k) on the tfwo-dimensional surface
|k| = k. It is not possible to uniquely continue g(k) from its
boundary value over such a two-dimensional surface even
for the class of sources considered here (localized and con-
tinuous) whose transforms are entire analytic functions of
k.? In particular, the entire function 5(k) is uniquely speci-
fied for all values of k if and only if it is specified over a finite
volume element in k space,' i.e., over a three-dimensional
region. The data in the deterministic inverse source problem
specifies (k) only over a two-dimensional surface and, thus,
is not sufficient to uniquely determine this quantity for all
values of k.

A similar situation prevails in the inverse problem for
random sources. In this case the data is a prescription of the
entire analytic function ® (k;,k,) of six variables over the
four dimensional surface |k,| = |k,| = k, while unique de-
termination requires that it be specified over a finite volume
element in (k,,k,) space, i.e., over a six-dimensional region.

Examples of deterministic sources that are not uniquely
specified from their values on the surface |k| = k, are pro-
vided by the class of so-called nonradiating sources.® These
sources are readily constructed by applying the operator
(V2 + k 3) to any thrice differentiable function Q (r) local-
ized within V. In particular the source

Pnr(®) =(V + kDO @) (3.1
possesses the Fourier transform
P9 = [ (T + kDO ()]
= — (k2= k)0 (k) (3.2)

with Q (k) being the Fourier transform of Q (r). It is seen from
Eq. (3.2) that irrespective of the choice of the function Q (r)
the source transform gy (k) vanishes when |k| = k,. The
class of nonradiating sources thus possess transforms which
are identical on the surface [k| = k, (namely, zero) but are

1689 J. Math. Phys., Vol. 20, No. 8, August 1979

rather arbitrary for values of k not on this surface.

The fact that a nonradiating source py g_(r) possesses a
transform which vanishes when |k| = k, means that it gen-
erates a field which vanishes identically outside its region of
localization. It follows that the deterministic sources p(r)
and p(r) + pn r. (r) produce identical fields outside V and,
hence, are both solutions to the same inverse source prob-
lem. The lack of uniqueness of solutions to the deterministic
inverse source problem can thus be viewed as being due to
the possible existence of nonradiating sources within the
source volume."'

The lack of uniqueness of solutions to the random in-
verse source problem can likewise be be attributed to the
possible existence of nonradiating sources within the source
volume. In this case the function Q (r) appearing in Eq. (3.1)
is chosen to be a member of a random ensemble of thrice
differentiable functions localized within V. The six-dimen-
sional Fourier spectrum of the autocorrelation function of
the random source

p'(r) =p(r) +pnr ()
is found to be
P'(k,ky) = (5*(k,)o(ky)) + (6*(k))pn g (K))
+ PR rk)pkr)) + (6% r (K )Pnr (k)
=@ (kl’kz) - (k% —k é)(ﬁ*(kl)g(kz))
~ (kT — k(0 *(,)5(k,))

(3.3)

+ (kT — kK] —kD(O* kDO (ky)). (3.4)
We conclude that
P kik) | i i =k, = LK) | = ey =k, B5)

independent of the statistical structure of the random pro-
cess Q (r). Thus, the two random sources p(r) and p'(r) gener-
ate fields possessing identical autocorrelation functions out-
side ¥ and, thus, are both solutions to the same inverse
problem.'?

The discussion presented above assumes, of course, that
the only information available concerning the unknown
source is that generated by field measurements performed
exterior to the source volume. If field measurements are al-
lowed internal to the source region or if additional informa-
tion is available which reduces the dimensionality of the
source, then the inverse problem may possess a unique
solution.

An example of the latter situation is provided by the
class of incoherent sources. These sources possess autocorre-
lation functions of the form

R () = I (r)8(r, — 1), (3.6)
where I (r,) is a continuous, nonnegative function called the
“intensity profile” of the source and §(r, — r,) is the three-

dimensional Dirac delta function. The Fourier transform of
R (r,,r,) is found to be

& (k, k) = J'Vd S I@E)e TR [k, — k). (3.7)

It is seen from Eq. (3.7) that an incoherent source is charac-
terized by an entire analytic function 7 (k) of only three varia-
bles. Moreover,
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P (kof1,kof ) = I [KoE, _f't)]’ (3.8
which shows that 7 (k) is specified for all values of k lying
within a sphere of radius 2k, by the autocorrelation function
of the radiation pattern. It follows that 7 (k) is, in principle,
completely determined (e.g., by analytic continuation) so
that the inverse problem for incoherent sources admits a
unique solution.

4. QUASIHOMOGENEOUS SOURCES

The concept of a quasihomogeneous source’ is a natural
generalization of the concept of statistical homogeneity to
include sources of finite extent. The term “‘statistically ho-
mogeneous” is, of course, used to denote multidimensional,
stationary random processes which, by definition, cannot be
localized to a finite region. Carter and Wolf " argued, howev-
er, that many physical sources behave locally as though they
were statistically homogeneous and thus have autocorrela-
tion functions that can be approximated as follows:

Rp(rl’rz) =1[4(r, +r)))g(r, —ry). 4.1
The function g(r) is a measure of the spatial coherence of the
source and is assumed to be appreciably different from zero
only for values of its argument r =r, — r, lying in some do-
main D which is much smaller than the source volume V.
The quantity 7 (R), called the source intensity, is assumed to
be nonnegative, is a slowly varying function of its argument
R = i(r, + r,) over the source volume V and vanishes out-
side this region. In addition, 7 (R) is assumed to be essentially
constant over the volume of coherence D. Sources having
autocorrelation functions that can be approximated by the
above model are called quasihomogeneous.

Substituting Eq. (4.1) into Eq. (2.8) yields the following
expression for the sixfold Fourier transform of the autocor-
relation function of a quasihomogeneous source:

® (kyk;) = f d’r, f dor, T[4 + 1)

X g(r, —rp)e ~ 1 ke, (4.2)
The above expression is simplified considerably by changing
the variables of integration from (r,,r,) to the (R,r) variables

defined above. Performing this change of variables yields"

@k, k,) = fd 3Rfd 3 I (R)g(r)

_ f{(k, — k)R 4+ [k_*gi]r}

Xe
= 1 (K)g(K), 4.3)
where we have introduced the wave vectors
k=k, —k;, K=1ik, +k,) 4.4)

and where 7 (k) and g(K) are the Fourier transforms of 7 (R)
and g(r) respectively.

The data for the inverse problem specifies @ (k,,k,) on
the boundary |k,| = |k,| = k. It follows from Eqgs. (4.4)
that this surface corresponds to the boundary

k®4+4K? =4k} 4.5)

in (k,K) space. The inverse problem for quasihomogeneous
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SOURCE

PINHOLE OBSERVATION
PLANE SCREEN

FIG. 1. Young’s interference experiment. The autocorrelation function of
the radiation pattern in the directions f, ,#, is determined by measuring the
fringes in the vicinity of the point P on the observation screen.

sources can thus be stated as follows: determine an intensity
profile I (R) and coherence function g(r) having Fourier trans-
Jorms I (k) and g(K), respectively, the product of which as-
sumes a specified value (equal to the autocorrrelation func-
tion of the radiation pattern) for all values of (k,K) lying on
the boundary defined in Eq. (4.5).

The uniqueness question in the inverse problem for qua-
sihomogeneous sources is complicated considerably by the
requirements that the spectrum @ (k;,k,) be factorizable in
the form required by Eq. (4.3) and that the transforms 7 (R)
and g(r) of the two factors I (k) and g(K), respectively, pos-
sess the properties described earlier. If, however, we restrict
our attention to sources for which the two functions (k) and
g(K) are analytic and for which one of these two functions is
known, then it is not difficult to show that the inverse prob-
lem admits a unique solution. For example, if I (k) is known,
then we conclude from the statement of the inverse problem
given above that g(K) can be determined over a volume ele-
ment in K space, namely for all values of K lying within the
sphere, centered at K = 0, and of radius ;. Analyticity of
£(K) then allows this quantity to be determined everywhere
by analytic continuation.

The situation considered above where either the intensi-
ty profile I (R) or coherence function g(r) is known is of great
interest both because it occurs frequently in practice and
because for such cases the unknown source function [either
I (k) or g(K)] can be readily determined from far field inter-
ference experiments. To see this, let us consider a Young’s
interference experiment' performed on the surface of a
sphere of radius R as illustrated in Fig. 1. The interference
fringes observed in the vicinity of the central point P on the
observation screen allows one to determine the spatial coher-
ence function of the field at the points P, ,P, in the aperture
plane. In the wave zone (k, R— o0 ) this coherence function is
proportional to the autocorrelation function of the radiation
pattern evaluated in the directions £, and f, so that from this
experiment we determine'®

I+

F ke, — 118 ko ") | = i), @6)

By varying the locations of the pinholes at points P, ,P, the
wave vector k = ko(f, — f,) can be made to assume all val-
ues within a sphere of radius 2k, while the wave vector
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K = ky(f, + #,)/2 can be made to assume all values within a
sphere of radius k. It follows that at the very least a band-
limited approximation to one of the functions can be deter-
mined if the other is known. When applied to the problem of
determining the intensity profile of a source of known coher-
ence, the procedure is quite analogous to that used in deter-
mining the intensity profile of stellar sources by means of the
Michelson stellar interferometer.'¢ This latter procedure re-
quires, however, that the stellar source be approximated by a
planar, incoherent source so that the Van Cittert—Zernike
theorem can be applied,” whereas in the procedure outlined
above it is only necessary to assume that the stellar source
can be approximated by a quasihomogeneous source of
known coherence properties.
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We apply the general formulation of the theory of extended systems developed previously to the
case of a relativistic string in an external field. This problem is relevant for the construction of
models of strongly interacting particles. When the external field is static and uniform, explicit
solutions are presented and classified according to their symmetry properties.

I. INTRODUCTION AND SUMMARY

In a previous paper, ' hereafter referred to as I, we pre-
sented a general formulation of the theory of relativistic sys-
tems that are extended in space under the influence of an
external field. Following that approach, in this article we
study in detail the motion of a relativistic string in an exter-
nal generalized Maxwell field. The relevance of the classical
solutions to this problem for the physics of strongly interact-
ing particles was emphasized in I. For instance, mesonic re-
sonances are usually associated with the states of motion of
strings with open ends and the amplitudes of the dual models
can be reproduced by fusion and fission of such objects. 2 A
closed string, carrying the same quantum numbers as the
vacuum, has a special status in the string picture of hadrons
and is most suitable for describing the nonresonant back-
ground of strong interactions >* (the Pomeron). In the
framework of relativistic field theory, the strings were also
interpreted as the relativistic counterpart of the magnetic
flux lines (vortices) found in the study of type II supercon-
ductors. ** This latter interpretation of dual strings is based
on a rather general and deep analogy between spontaneously
broken gauge theories and the theory of superconductivity. ®
This observation suggests a physical picture of quark con-
finement in which an extended object is kept in equilibrium
against the pressure of a surrounding charged superfluid. *°
In the field theoretical formulation these extended stringlike
or baglike objects are viewed as domains embedded in a
mass-inducing vacuum and constitute most suitable traps
for the hadron constituents.

The above arguments are enough to motivate a deeper
investigation of the classical foundation of the string theory,
and this is the main purpose of this paper.

Our formulation is geometric: It solves in a natural way
the problem of isolating the dynamical degrees of freedom of
the string and applies equally well to extended objects of
higher dimensionality " (membranes).

Let us recall from I that the evolution of the string is
completely described by the following pair of dynamical
equations

“Permanent address.
®Alexander von Humboldt fellow.
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p(—%%—{-vw—Nzk):anN, (1.1a)
p(éﬂ—vu)chbN, (1.1b)
ot
where
F,= —(1 —u»)E, — uwE, — Buw, (1.2a)
F,=(1 —w)E, + uwE, + Bu. (1.2b)

Here k is the curvature of the string, /,n, and b are the unit
tangent, normal, and binormal vectors respectively, and v is
the normal angular velocity of the osculating plane:

- db
v = n--a—t. (1.3)
The velocity of the string is expressed as
v=un+ wb, (1.4)
and
N=(1—|v|»)" (1.5)

Furthermore the dual 1-form of the external field is given by

i E'dx'. (1.6)

i=1

*F = Bdx® —

Finally p and c are the generalized mass and generalized
charge of the string, respectively. In this paper we discuss the
case in which *F'is a given constant 1-form, corresponding to
a uniform, static external field. This constant 1-form defines
a family of parallel hyperplanes. If the normal to these hy-
perplanes is spacelike, (*F) 2> 0 and we shall call the field
“electric.” It can be made purely electric by a suitable Lo-
rentz transformation. If the normal is timelike, (*F)? <0
and we shall call the field “magnetic.” In the latter case *F
constitutes a Lorentz frame. In that frame the field is purely
magnetic (E = 0). The energy of the string, defined only for a
closed string, was found to be'

U _
€ = f—y+cJE-a'2=
P s' N s P

Here i1, is the canonical measure of the metric y induced on
S, the topological model of the closed string and X is any

surface having the string x(S ') as boundary at a given time.
Furthermore, we have expressed the potential energy of the

My - =
— 4+ cm-E. 1.7
~ ()

S

® 1979 American Institute of Physics 1692



string in terms of the moment
xxdl.

mz%f
x(S")

In the following we shall study string configurations
possessing a symmetry group. A “symmetry group” of the
string is a subgroup P’ of the Poincaré group, leaving the
world track of the string invariant. In terms of the embed-
ding £: K—R %, where K =R X M is the topological model of
the world track (cf. I), we shall call £ invariant under P’ iff

VpeP' 3fed T (K)pof = £,
where & * (K) is the group of orientation preserving diffeo-
morphisms of K. The infinitesimal version of the above state-
ment is the following: For every generator A of P’ there is a
vector field 7 in K such that
aer
os°
We present explicit solutions which are invariant under
translation either in time (static case, cf. Sec. II) or in space
(straight lines, cf. Sec. IV). The knowledge of such classical
solutions is an essential step towards the formulation of a
quantized theory of interacting strings.

Il. STATIC CASE

In the static case ¥ = w = v =0, N = 1 and the dyna-
mical equations reduce to:

(1.8)

— AR (1.9)

,'70

k= LEb En=o0. (2.1)
p

From the above equations it is evident that the general
solution of the free problem (¢ = 0) is a straight line. Fur-
ther, for ¢£0 a straight line solution must be either parallel
or antiparallel to E.

In the nonstraight line case, differentiating the first of
Eqgs. (2.1) with respect to the arc length s, taking into account
(the third of) the Frenet formulas

dl ., _ di - =~ db _
—=kil, —= —ki41th — = —1n, 2.2
ds & ds + ds " 22)
where ¢ is the torsion of the curve
1 ,dx d’ d°%
t = —||]——=——, 2.3
SIS @)

and using the second of Egs. (2.1), we obtain

dic _
ds

Likewise differentiating the second of Egs. (2.1) with respect

to s and using the second of (2.2) and the first of (2.1) we

obtain

t= (c/p)EZ (2.4)
Finally, differentiating the above equation with respect to s
and using the first of (2.2) and the second of (2.1) we get

dt
— =0,
ds
Thus, the curve has constant curvature and torsion.
Hence, it is a circular helix with axis in the direction of E [the

latter follows from the second of (2.1)] with:

(2.5)
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k41t =(c/p)(EL+ E]) = (cE /p)’, (2.6)
where E = |E |. The radius of the helix (@) and the period
divided by 27(y), are expressed in terms of k and ¢ by:

a=k/(k*+1%, y=t/(k*+1?.

From Eq. (2.6) we obtain the following relation between a
and y:
- 2
(cE /p)*
Thus 0<a<1/|cE /p|. The two limiting cases are the straight
line in the direction of E (a = k = 0) and the circle of radius

a=1/(cE/p)(y=1t=0)
The helix is right-handed if ¢ > O and left-handed if z < O.

2.7

1. SYMMETRY OF A SPACE TRANSLATION[7(7)
DYNAMIC]

With this symmetry, the topological model of the string
is R 'and X(R ") is a straight line (k = 0) and the triad (/,7,b)
is constant (v = 0).

A. Electric case

We can always choose 7 such that £, = 0. With this
choice, the dynamical equations reduce to:

12: _Blusz w=ﬁl(1—w2)N,
where B, =cE, /p. If §; =0, Egs. (3.1) imply u = 7,,
w = ¥, (constants). Thus we have motion with constant ve-
locity, which can be brought to rest by a suitable Lorentz

transformation. If B, 520, the first integral of the above equa-
tions is

3.1

u w

==Yy o B t!

N NTh
which, setting d = u, b = w (a, b distance traveled in 7 and b
direction respectively), may in turn be integrated to give:

a= gloglﬁlw(l + P +BUD,
1

(up to a time translation),

bl —1t?= L+ 72.
Bi
These equations describe motion with constant proper accel-
eration in the direction b:

" 18(15x")
ot = — — | — =),
N 8t \N ot

a’=Bi1+7).

B. Magnetic case

The dynamical equations in this case read

u=ANw, w= —ANu, (3.2)
where A = c¢B /p. A first integral of the above equations is

N=(01-8%"* [B=®w?+ w*)"?aconstant, 0<B<1].
Then Egs. (3.2) can be integrated to give:

d=u=@sin[A (1 — B2V,
b=w=pcos[A (1 —-B?"*]

(up to an arbitray time translation). The above equations
may in turn be integrated to obtain:
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FY T e o AU

a= —

B Gnlia— gy
/l (1 _ ﬁ2)]/2
[up to an arbitrary translation in the (7,5 ) plane]. We con-
clude that the string describes circular orbits on its normal
plane, of radius

,_ 1 5 _ il
A1 -y V14242
and with frequency (counterclockwise for A > 0, clockwise
for A <0)

w=|4|(1=BH""=A|/1+7r1H"

IV. AXIAL SYMMETRY [SO(2) DYNAMIC]

With this symmetry, the topological model of the string
is.S'and ¥(S ') is a circle of radius @, and b is constant. Thus,
k = 1/aand v = 0. We define b to be the distance traveled in
the b direction.

A. Electric case

Consistency with the symmetry requires that the elec-
tric field £ be normal to the plane of the circles
E = Eb.
The dynamical equations (1.1) reduce to
2
i= N _aN( =),
a

w=ANuw, N=(1—u?>—w?)'? 4.1
withd = — u,b = w, and A = cE /p. A first integral of the

above equations is the energy integral (1.7). In the case we

are considering,

f‘u,/N: 2wa/N, m = ma*h,

and the energy integral has the form
2a/N — Aa’ = & /mp. 4.2)

It A =0, Eq. (4.1) implies that w = const, and we can
set w = 0 by a suitable Lorentz transformation. Then, Eq.
(4.2) reads

N=(0—-a)"*=a/a,, 4.3)
where we have defined a, = & /2mp. The solution of this
equation is

a = a,cos(t /ay). 4.4)

This solution describes a circular string which starts from
rest at ¢ = 0, with radius ¢ = a,, and contracts monotonical-
ly to the singularity @ = 0, at time T = (7/2)a,, . The solution
is tangent to the null cone at the singularity (N—0 as a—0).

If now 150, defining a parameter B = & /mpA, we may
write Eq. (4.2) in the form

V= %(azj—ﬂ).

In the second of Egs. (4.1) we may express dw/dt as
— udw/da, thus obtaining

(4.5)
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d_w = — 2ANw.

= (4.6)

Since N is known as a function of @ from Eq. (4.5), we can
integrate the above equation to obtain

w=y exp( — MJNda) =v/la* +B|. 4.7)
Consequently, we have

w=1-N?>—w=px)/(x+8)> (4.8)
where x = a2, and p(x) is the quadratic polynomial

Yx) =x2—22/A7 =B +B* -y 4.9

Finally, if ¥ given by Eq. (4.5) and u given by (4.8) are insert-
ed in the first of Egs. (4.1), that equation is satisfied.

We begin the discussion of the solutions by first noting
the following general properties: All solutions which reach
the singularity @ = O are tangent to the light cone at the sin-
gular point; N—0 as a—0. In addition, all unbounded solu-
tions are asymptotically tangent to the light cone; N—0 as
a—w.Asa—0, u*—1 — y2/3? and du/da—0. As a— o,
u—0.

If u does not change sign in the interval [a,, a, ], then

“_da _  (“la+B]
t(az)“t(dl):J;I T = iLIWda,
and

“  wda 4 %
b(az)“b(al)z—[ll ~ = iL] Wda

where we have + or — according to whether u<0or >0in
the interval [a, ,a, ], respectively.

The behavior of the solutions depends on the discrimi-
nant 4 of the quadratic polynomial y(x):

d=(Gro)err= i)
(4.10)

IfA <0, p(x)is positive definite and we have unbounded
singular solutions (a ranges from O to « ) with two branches
corresponding to u > 0 and u < 0. Further, ¢ (@) — ¢ (0), the
time lapse between radius a and the singularity, is finite, and
b () — b (0), the total distance traveled in the x * direction,
is also finite.

If A = 0, the polynomial y(x) has the double root

x,=1/A%~A1%*/4. (4.11)
For x, > 0, we have the separatrices.S, and.S_ and their
intersection, which is the critical point: ¢ = a. = [x.]'/?,

u = 0. The separatrices S, and.S _ are solutions for which
a—a, ast— + o and — oo respectively.

For x, = 0, we have an unbounded asymptotically sin-
gular solution with two branches corresponding to ¥ >0 and
u<0, for which ¢ (@) — t (a,)— + o« and — oo respectively,
as a—0 [a, fixed5£0]. Also, |b(a) — b(ay)|— = as a—0.

For x, <0, we have unbounded singular solutions, with
the same properties as those stated for the case 4 < 0.

If finally 4 > 0, the polynomial y(x) has two distinct
roots
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1
u
0 a
-1
FIG. 1. The (a,u) diagram for A <0.
x,=QRA*—B)+ Va4, x_<x,. (4.12)

For x _ ,x , >0 we have solutions with a<(x _)"/? and
a>(x , )'?, which are bounded singular and unbounded reg-
ular, respectively. For the unbounded regular solutions,

b () — b[(x_)'"?] is finite. For x _ <0,x , >0 we have
only the unbounded regular solutions a>(x , )'/2.

For x |, = 0 we have unbounded asymptotically sin-
gular solutions for which |¢ (@) — # (@, )|,|b (@) — b (a)|—
as a—0.

Finally, for x | <0, we have unbounded singular
solutions.

In the case ¥ = 0, we have w = 0 and the motion of the
string is confined to its plane. In the following we shall dis-
cuss the case y=£0.

-1

FIG. 2. The (a,u) diagram for A >0, 0 < |y| <2/42
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Case A <0: Inthis case, Eq. (4.5)implies: 8 <0,a* < |8 |
(by definition N > 0). The discriminant (4.10) is positive and
among the roots of y(x), x . >|B|and x _ < |B|. Further,
x_ >0iff |B|> |y|. Thus, we have the bounded singular
solutions a<(x ) '?*for |B|>|y| (Fig. 1).

Case A > 0: This case divides itself into three subcases:
x.>0,x. =0, and x,. <0 [x, defined by (4.11)] for which
0<|y| <2/A% |y| =2/A% and |y| > 2/4 ?, respectively.

Subcase 0 < |y| < 2/4* (Fig. 2): In this subcase, for
B = 1/4% + A%y?/4, which corresponds to 4 = 0, we have
the separatrices

s (a* —ap)

wu= +
- (@ + 1/A2+ 1%7/8)
and their intersection, which is the saddle-type critical point
a =a_, = (x.) "% u = 0. The solutions which correspond to
the separatrices are (up to a time translation).

(4.13)

1 1 a—a,
Fr=a+ lo ,
A% a, a-+ta,
4.149)
a—a
Fb= L log 3
2a, a+a,

The solution which corresponds to the critical point repre-
sents a circle of constant radius a, traveling in the direction
normal to its plane with velocity w = ¥4 2/2. For y = 0 we
obtain the static circle with radius ¢, = 1/4 which we en-
countered in the study of the static problem.

For 8> 1/4%* 4+ A *y */4 which corresponds to 4 <0 we
have the aforementioned unbounded singular solutions.
These solutions have a minimum of u  at

a’l=p—A%?%2, 4.15)
which is given by
Z=1-— ——1——— (4.16)
AXB — A%/

-1

FIG. 3. The (a,u) diagram for 1 > 0, |y = 2/4 2

A. Aurilia and D. Christodoutou 1695



-1

FIG. 4. The (a,u) diagram for 1 >0, || >2/A %

Also, if B<2/A 2, |db /da| has a maximum at > = 2/4 *
—B<al

For |y| <B<1/A* + A%*//4 (4 >0), we have
O<x_ <x,andx,<x, <2(2/A2%— |y|). Thus, we have
the pair of solutions a<(x _)'/* and a>(x , ) /2 bounded
singular and unbounded regular, respectively.

For < |y| we either have x _ <O for — |y|<B<]y| or
x_ <|B|forB < — |y|. Thus, we have only the unbounded
regular solution a>(x , )'?>2(2/A % — |y|) {since for
B <0,a’<|B|implies N <0 [Eq. (4.5)]].

Subcase |y| = 2/A* (Fig. 3): In this subcase, for
B = 2/4 %, which corresponds to 4 = 0 with x, = 0, we have
the unbounded asymptotically singular pair of solutions

u= +a*/(a*+2/49), “4.17
for which (up to a time translation)
Ft=a—2/A%, Fb= —vy/a. (4.18)

For B> 2/4? (4 <0), we have bounded singular solu-
tions with a minimum of u ? given by Egs. (4.15) and (4.16),
and with no maximum of |db /da|.

For f<2/A? (4 > 0), we have the unbounded regular
solutions a>(x , ) /%

Subcase |y| > 2/A* (Fig. 4): In this subcase, for B> ||
we have unbounded singular solutions (For 8> 1/4 2

+A%%/4,4>0;forf=1/A?+1%/4,4 =0and
x, <0;for 1/A2 + A%y?%/4>B>|y|,4>0and x | <0.)
These solutions possess a minimum of u 2 [given by Egs.
(4.15) and (4.16)] if B> A *¥2/2 (no maximum of |db /dal).

For 8 = |y|, x , = 0and we have the unbounded as-
ymptotically singular solutions

p2— @la+ 20y = 2/47)]
@+ ¥’
for which (up to a time and x * translation

(4.19)

— [+ 2v] —2/49)])72 _ 7|
Fr=[a*+ 2]y )] (7~ 2/45]"
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[2(“,| _2/4 2)]1/2+ [02+2(|7’| _2//{ 2)]1/2
a

X log

’

(4.20)
Fh= — Y
[2(y| - 27491

xlog| LML= 24D Tt la” & 2y = /2]
a

Finally, for B < |y| we have the unbounded regular solu-
tionsa>(x , )" (x, >0).

For all bounded singular solutions, as a decreases from
(x _ )'?t00, zand b as functions of @ can be expressed in the
following elliptic integral form:

t=I()y—I@Vx_), b=JA)—J@Vx_)
where

16 = @A/ IV x DB +x,)FUhE) —x , E®E],

JE) =V x Fke),

with

k=Vx_/x 4
The five qualitative types of solutions described above are
displayed pictorially in Fig. 5.

B. Magnetic case
In this case the dynamical equations become

A
Nals

Cnitical solution and separatrices

Unbounded Asymptotically Singular Unbounded Singular

0%

Bounded Singular Unbounded Regular
FIG. 5. The five types of solutions of the SO(2) problem (Electric case,
¥>0).
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FIG. 6. |B] < 1.

d= —u, b=uw, (4.21)

u=N%¥a—ANw, w=ANu,
where N =[1 — (u? + w?)] 2

A first integral of the above equations is the energy inte-
gral (1.7) which yields

N=a/q, 4.22)
where
a, =¥&/2mp>0.

Equation (4.22) allows us to express w in terms of  and a:
w=n[l—(a/a?) —u*]"*" 5= +1 4.23)

Substituting for ¥ and w from (4.22) and (4.23) respec-
tively, in the third of Egs. (4.21) we obtain the following pair
of equations for the flow of a vector field X on the (a,u) plane
(which is actually the R * X ] — 1,1[ open subset of the
plane) .

i= —u=2X,, 4.24)
u=a/ag{1/ay—nA [1 — (a/ap)* — *}'*}. =X,

The critical point of this vector field (X = 0) is the point
u=0, a/ay, =[1—1/1%2)"? (4.25)

which exists iff 74 >0 and |1a; | > 1. The matrix X' at the
critical point is given by

— N \x
y >
S?
/op%v
[ops Sa
2 Si
04_/.
% 3
X
FIG.7.|B| = 1.
1697 J. Math. Phys., Vol. 20, No. 8, August 1979

FIG.8. 1< |B|<2.

ax, adx, o _i
da Ju
X Verie = =1, 1 .{(4.26)
ax, dx, A% — e 0
da du crit 0
This matrix has imaginary eigenvalues
g, = +i(A*—1/a})""* (characteristic
frequencies). 4.27)

Therefore, the critical point is a vortex point.
Multiplying the right-hand side of the second of Egs.
(4.24) by — u and the left-hand side by @ we obtain

— udu = a/ag{1/a, — 9A [1 — (a/a,)? — u*]"*}da. (4.28)
Let us now define new variables x and z by
x = (@/ay)?,
z=1—(a/ay)* —u’
In tems of the new variables, Eq. (4.28) assumes the form
dz +1B(2) " %dx =0, (4.30)
where B = Aa, 0. The above equation can be integrated to
give
7Vz=w=(1/28)— B,
z=1—x—y= /48y — B°x)%,

(4.29)

4.31)

53
y
Q
S
N
o

Ss 4704, \

2
)
Az
2

FIG.9. 8| =2.
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where ¥ is a constant of integration and y = u 2. The above
pair of equations constitute the complete first integral of
Eqgs. (4.21).

The physical region in the (x,y) plane is the right trian-
gle defined by the conditions x > 0,y>0 and
w?=1—x — y>0. The curves y(x) are parabolas convex to
the x axis, whose curvature depends only on 3,

y=(BY/MHx, —x)x—x_) (4.32)
Here, the roots x , are given by

x, = i[(l —1)i\/4_], (4.33)
(x . >x __ ) and the discriminant 4 is

A=1—-y+p2 (4.34)

For a fixed value of 5 the locus of maxima of the parabo-
las (4.32) is a straight line parallel to the hypotenuse of the
right triangle which represents the physical region

1 1
X, = 7);;(7—2), n= F(l —r 69, (439

orx,+y, =1 !

1 == =
B 2

Thelocus of maxima intersects the physical regioniff |5 | > 1.

For y = 3% + 1, the discriminant 4 vanishes and the inter-

section of the corresponding parabola with the physical re-

gion (which is nonempty only for |8 | > 1) is the critical point

x, =x_=x=1-1/8% y =0.

This is a solution which represents a circle of constant radius
a/a, = [1 — 1/82]'/? traveling in a direction normal to its
plane with velocity w = 1/8.

A parabola intersects the physical region, and therefore
isrelevant, ifand only ifx . > Oand y, »0. These conditions
yield the folowing range of y for a given £:

Bl>1: =218 <y<B*+1,
(4.36)
BI<l:  =2B1<y<2|B]
A parabola is tangent to the straight line x +y = 1, of
which the hypotenuse of the physical triangle is an interval,
at

3¢

y
S3
2
(&)
%
s 3
5\ Ay X
D
%
Re 5)
Ry
Ry
X R]

FIG. 10. |B|>2.
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:
:

oD

X3

o

A

FIG. 11. The regular solutions. [Here > O, for 8 < O reverse direction ofb_.]

X, = y/B>. 4.37)
In terms of x,,, the first of Egs. (4.31) may be expressed as
w=1B(x, — x), (4.38)

from which it follows that Swis >0, = 0, or <0 whenever x
is <x,, =x,and > x,, respectively.

In conclusion, we have a family of solutions of Eqs.
(4.21), parametrized by two variables 3 and 7 up to time
translations and translations in the direction of 5. For any
given pair (53,7) all the properties of the solution can be read
from the corresponding parabola (4.32) in the (x,y) plane.

Thus, we can distinguish three classes of solutions: (1)
R: regular, (2) A: asymptotically singular, and (3) S: singu-
lar. The regular solutions correspond to x _ >0 which is
equivalentto ¥ > 2|8 |. The asymptotically singular solutions
arethose for whichx _ = 0, whichisequivalenttoy = 2|3 |.
These solutions have the property that x—0 as t— o0, from
which their name is motivated. Finally, the singular solu-
tions are those for which x _ <0, or, equivalently, y < 2|3 .
The regular and asymptotically singular solutions exist only
for |3 | > 1, as is evident from (4.36).

A Az A3

FIG. 12. The asymptotically singular solutions. [Here 8> 0, for 8 <0 re-
verse b.]
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S, Sg
X3

ol

X2
X

FIG. 13. The singular solutions. [Here 8> 0, for 8 <0 reverse b.]

The regular solutions are of the following four types:

(R,)y = B?* + 1: critical point,

RB* <y <B?+ Lixy>1,

Ry =B%x =1,

R,y =B% x4 <1 [types (R;) and (R,) exist only for
1B1>2]

The asymptotically singular solutions are of the following
three types:

ADIB|<2:x0 > 1,

A)IB|=2ixy =1,

(A))B<2:x, < 1.

Finally, the singular solutions are of the following five
types:

S)y>B%x>1,

Sy=B8%x=1,

(S;)0<y<B%:0<x, <1,

S)y=0:x, =0,

(S5)7 <0: x5 <0 [types (S,) and (8,) exist only for
18 <2].

The solutions (R;),(A, ), and (S, ) are at rest
(u=w=0)atx, =x; =1, withdb/da = 0. Thesolution
(S,) starts and terminates at x = O withu = — 1 and + 1
respectively, and w = 0. (Figs. 6-13).
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In the case of the regular solutions x _ <x<x, andas
x decreases from x , tox _, t and b as functions of a are
expressed in the following elliptic integral form:

t= -—3"=F(k,§),

vV
BIV %+ (4.39)
b= BABL (x Fheg)—x, BN,
Vix,
up to a time and x, translation, where

X x+ X aO

In the case of the singular and asymptotically singular
solutions 0<x<x , (x = Obeing the singularity:a = N =0)
and as x decreases from x | to zero, t and b as functions of a
are expressed as

2a
= ——F(k&),
BV x, —x_

b= —L[(XO—X_)FU(@‘)
X, —x_
—(xy —x_)EKS)],

up to a time and x 3 translation, where now

k=( x+ )I/Z §=(X+_x)1/2 xz(—q_)z.
X, —X_ ’ x ’ @

“+
(4.42)

441
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A Lie group framework for composite particles and mass
spectrum
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We propose a concept of internal structure and a relativistically covariant method of unifying the external
and internal structures, leading to a dynamical Lie algebra without superfluous generators. In this
framework we study in more detail a Lie algebra unifying external space with an internal 3-space, and
several representations which describe models of composite particles and give rise to various mass formulas
capable of describing the hadron spectrum; we make use of both unitary irreducible global representations
and partially integrable, Schur-irreducible, symmetric local representations.

I. INTRODUCTION

The ever-increasing number of particles lead physicists
to build models in order to organize the wealth of data in the
resonance region for high-energy phenomena.

The success of the quark model, the importance of the
harmonic oscillator in nuclear physics, and the fact that
SU(3) is a symmetry group of the same, suggested, since the
quarks came out, that we look for a (nonrelativistic) hadron
model based on the harmonic oscillator.! Various relativistic
generalizations have been made since then.? One of the diffi-
culties in these approaches is that the very concept of the
“relativistic” harmonic oscillator is not yet been perfectly
defined, and one of the drawbacks is that the relativistic co-
variance is not always satisfied. The most important (for-
mal) contribution in this respect is that of Feynman et /.,
which is based on Greenberg’s nonrelativistic harmonic os-
cillator symmetric quark model. Nevertheless, several criti-
cisms can be leveled at their analysis, the most important of
which (cf. also Ref. 3) bear on the ambiguity of definition
and the spectrality of the intervening operators on the one
hand, and on the fact that they disregard the timelike excita-
tions after having postulated a relativistic treatment at the
outset.

In this paper, a partial summary of which has been pub-
lished in Ref. 4, we propose, within the framework of Lie
algebras, a relativistic covariant internal formalism and uni-
fication method leading to various hadron mass formulas,
both in irreducible unitary global representations and in par-
tially integrable, Schur-irreducible, symmetric local repre-
sentations. The attitude which we have taken here is that of
reconsidering the very concept of “‘internal structure” rather
than the symmetries of this structure and of giving the
“mass-observable” priority over the “internal observables.”
In our opinion, the internal symmetries, which manifest
themselves in the various interactions of elementary parti-
cles, can be considered, at least in a first approximation, as
adding constraints to the external degrees of freedom there-
by lifting the possible degeneracy of energy. For this last
function, at least for the strong mass-differences a perturba-
tive method is difficult to justify. Moreover, there is nothing
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to prevent the mass from depending on parameters which
need not be conserved in the interaction observed at present,
i.e., on supplementary quantum numbers that do not appear
in the present characterization of the particles, as the quan-
tum numbers have so far been considered chiefly within the
framework of conservation laws. All of this is justification
for not subjecting our model to any constraint of the unitary
symmetry type at the outset. We shall obtain our mass-oper-
ator by substituting for the usually considered monoparticu-
lar states (responsible for the continuity of the spectrum)
multiparticular states with degrees of internal freedom. In
this composite particles model the internal structure is de-
scribed by the Heisenberg algebra §), and the external struc-
ture by the Poincaré algebra p. We unify them by a Lie subal-
gebra g, containing p, of Z(§,,) ® % (p), which is
isomorphic to % (5, ® p) (Ref. 5, corollary 2.2.12); % de-
notes the enveloping algebra. We also adopt the following
hypothesis: The generators of g, other than those of the Poin-
caré algebra, are relativistic covariant; more precisely, they
commute with the translations of p and constitute a basis of a
real finite-dimensional representation (direct sum of irredu-
cible representations) of 8[(2,C).

The hypothesis that the (relativistic) internal structure
is described by the Lie algebra of the (nonrelativistic) com-
mutation relations might, at first sight, seem ambiguous.
Now it often happens that nonrelativistic concepts are used
in a relativistic context as is the case, for instance, of the
parton model in the infinite momentum frame (cf. for exam-
ple Ref. 6). Moreover, to our knowledge, no experiment
mentions any observable difference between the relativistic
and nonrelativistic intrinsic internal structures. In addition
the same hypothesis, with the Poincaré group replaced by
the Galilée group could, in our opinion, be also considered as
a nonrelativistic approximation.

The hadrons are interpreted as the excited levels of
these composite particles, whose interpretation shows how
energy (mass) is created on the basis of the internal dynamics
thus defined. The fact that particles can be interpreted in this
framework as the excited states of a system composed of
harmonically interacting “‘canonically conjugate” compo-
nents relates our model to that of Feynman ez al.?
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The internal degrees of freedom result therefore, in our
model, from the Heisenberg Lie algebra §, and its envelop-
ing algebra. Several reasons suggest that this choice is natu-
ral and reasonable, among which we may quote:

(a) b, is at the basis of the mathematical formulation of
the nonrelativistic quantum phenomena, being the canonical
algebra of observables in standard quantum mechanics.

(b) the Gel’fand—Kirillov conjecture,’ that if K is a com-
mutative field of zero characteristic, g an algebraic Lie alge-
braon K, §, the Heisenberg algebra on K of generators
G593 Prsees P3 1), D, (K) the field generated on K by the
ZENerators §,...,q,,; Pis---sPr; Zis---sZx » Where all the commuta-
tors other than those of §,, are zero, then there exists # and k
such that the enveloping field of g is isomorphic to D, , (K).
This conjecture has been proved in the most important cases,
including the complex solvable and semisimple Lie algebras
and is therefore true, e.g., for 8I( p), etc.

(c) b, appears naturally in the structure of the extended
Galilée group and the “passive” Galilée and Poincaré
groups.?

2. DEFINITION AND STRUCTURAL PROPERTIES OF
THE GROUPS G,

Let (M,,,,P,) be the canonical basis of p = R * & 8[(2,C)
(where & denotes the semidirect sum of Lie algebras, the
semidirect product of the groups will be denoted by a point,
and the Greek indices vary from 1 to 4) and g, be the subalge-
bra of % (9, ) ® % (pJ generated by

L,u,v:l®Mpv’ =1®P;u Qip.:Qi®P;t’
A,=peP, C, = leP,P,
Sog, isaLiealgebra of dimension 8» + 20 whose (non-

zero) commutation relations are given by

[Lyv’Lpo] = - gpvaa - gvoL;zp + g,ucerp +gvpL,ua’
[Lyv’ ] =&, y_g/.mev’

¢y
[L/zv’ o] gypcva + gvacyp - g,uacvp + gvpcua’
[Al,u’ij] y yv’

where X, denotes T,,4,,, or Q,, (for fixed i), and g, is the
usual metric tensor (g, = §; and g,; = 0, for 1<i,j<3,
gu= —1).

Let n,, (resp. R *) be the subalgebra of g, generated by
(4,,9:,,C,,) [resp. (T, )). If we denote by D (4, /') the irredu-
cible representation of dimension (2/ + 1)(2j' + 1) of
81(2,C), we have the following proposition.

Proposition 2.1: g, is the semidirect sum of 3[(2,C) by
the nilpotent ideal R * @ n,, relatively to the representation

[ "s IDa@,%)} e D(1,1)e D (00),

where D, (1,5) =D (},}) for all a.

Proof: Let R ° be the subalgebra of n, generated by

(C,,);itisthe center of n, and the quotient algebran,/R 1°i
1somorph1c to R ®",

Then n, is nilpotent as a central extension of commuta-
tive Lie algebras. The semidirect sum,
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g, = (R*®n,)@sl(2,C), isdefined by{ 2" *\'D,, 2,2)} @,
where 7, the representation of 81(2,C ) acting in R o »iseasily
identified with the symmetric component of the representa-
tion D (3,3) @ D (3,3) of 81(2,C). Then it follows that
7 =D (1,1)e D (0,0).
Q.E.D.

Now we shall denote by x [resp. X, X, x, (X;); i, OF
X7 (x;»4 ]a4-vector [resp. the associated 2-vector, the as-
sociated 3-vector, the generic element of R *°, R *", 81(2,C)],
6" the function equal to 4 if 4 = v and to 1 if not,
H*R ",R ™) the second cohomology group of R " with coeffi-
cientsin R "and 4 = {(g;)(q,)} [resp.,& = {t,¢, (@).(¢,),
A}] the generic element of the group R *” (resp. of the connect-
ed and simply connected group G, of Lie algebra g,, .

Proposition 2.2: The group law of G, is given by:
g8’ ={t+ DG’ e + [D(1,1) @ D(0,0)](4 )’
+ ﬁ(h D (2:2)(A )( ),( +D (2»2)(‘4 )q,.),

(¢ + DG H(A)g;)44 ),
where BeH (R ®",R '°) which is defined by
B(hh'Y =08 (a; 89,y + @ ®q,;)"}
and

D3, = {(D (.4)(4)a; ) (D (3,304 )q )}

Proof:LetK = R X 3R *"be the connected and simply
connected Lie group, central extension of R 3" by R *° defined
by the factor 3. If {c, (g,), (¢;)} denotes its generic element,
its group law is given by

{e(a) (@)} {c (@) ()

=[e+ ¢ +BMR")(e +a)lg +q)).

Let us determine the Lie algebra £ of K; for that we
consider the following one-parameter subgroups of X:
kit—{1,0,0}, k':t—{0,(za;).0}, k":t—{0,0(rg;)}.

The vector space subjacent to f is generated by the f'(¢)], _,,
where fe(k,k ',k "). It is isomorphic to R *° X R 3". The only
nonzero commutators of f are those relative to the products
{0, (@),0} {0,0,(g)}; more precisely, they are given by

[£0,(@),0},§0.0.(g)} 1 =¥ ()], —o

where 7 is the curve;
v:it—{0,(t 7a)),0} {0,0,(t *g)} [ 0,(r %a,),0}{0,0,(r *g)} .
We obtain

[{0,(2).,0,{0,0(g)} 1 = {B({(a),0},{0,(¢)}),0,0}.

Suppose 4 ;, (resp. @ ,,,C ,.,) is the vector {0,(q;),0}
(resp. [0,0,(g s {¢,0,0}), all the components of which are
zero save for (a,)" [resp.(g),,c""] which is equal to 1. The
previous relation then gives [4 ,”,Q Jv] 6UC v This im-
plies that f is isomorphic to n,,, and the result is a direct
consequence of Proposition 2. 1.

Remarks 2.1: (a) If we denote by C (resp. 7,G ) the sym-
metric matrix with coefficients C,,, (resp. T,T..8,,.), the ele-
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ments Tr [GC1* (k = 1,2,3,4) and Tr[(GT }(GC)']
(! =0,1,2,3), where Tr denotes the trace, are in the center of
% [(R*o® R ™&3[(2,C))

(b) Given one of the algebras g,, and another Lie algebra
[,, of dimension », it is possible to construct in a natural way
an algebra U(g,,,[,) unifying’® then in the following manner: If
[X,X;] = C,/}X,are the structural relations of I,,, then
U(g,,1,) is generated by (g,,,[,) with their respective structur-
al relations to which we adjoin

[X, i’ij] = Ciijk,u’ [X i’Aj/.L] = CijkAkp'
Thus defined, U(g,,[,) admits the decompositions
U(gnl) = 8,81, =R*en,)¢@I2,C)0l,)
= {R*e (n,&],)}481(2,C),
where 1, &1, is defined by the direct sum of ten trivial repre-

sentations and eight representations equivalent to the ad-
joint representation of [,,.

3. DEFORMATIONS OF SOME SUBALGEBRAS OF g,

In order to bring to light other possibly interesting mod-
els and the “internal symmetries” content of the groups G,
we are going, in this article, to consider some deformations
of certain subalgebras of g,, (deformations not necessarily
extensible to g, ) which present a potential physical interest
corroborated by the new particles recently discovered which
lead, among other things, to higher internal unitary
symmetries.

Proposition 3.1: R 1°¢81(2,C) can be deformed in the
first order into u(3,1), gl(4,R ), and tv,, where in, is the Wey!
algebra associated with the representation D (1,1) of 81(2,C).

Proof: Thebracket{ , ], of such a deformation is neces-
sarily written

[X,X2), = [X,.X] + t(X X)), ¥V X, Xeq,

where g = R [°¢38[(2,C) and ¢ is an element of #7(g,q). A
line of argument analogous to that of Ref. 10 shows that it is
sufficient to restrict ourselves to ye#* (R [°,9)°, the second
cohomology group relative to 8[(2,C ). Thus the conditions of
integrability come down to:

Z ¢(¢(X1,X2)»XJ) =0, v XI)XZ)XSER éo’

P(X., X, X)

where P (X,,X,,X;) = circular permutation on (X,,X,,X3).
(a) Let ye (R °,)" be defined by
Ill(cluv’cpa) = - gprva - gVH'L/tp - gya'va — &y, uo*

This cocycle verifies the conditions of integrability and de-
fines thus a Lie algebra law.

Denoting |t |* C,, by N,,, and according as ¢> 0 or
t <0, we recognize the commutation relations of u(3,1) or
gl(4,R), respectively.

(b) Let ye%(R [°,g)° be defined by
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where { D,(F;) 1<i<9} isabasis of R °such that D generates
D (0,0) and (F,), 1<i<9, generates D (1,1).

Then g defines a deformation of g isomorphic to the Lie
algebra of the group Wy = (R °-R ’; )-8[(2,C);R % being the
multiplicative group of positive reals, the semidirect pro-
ducts being defined, respectively, by the representation
D(1,1) of 8[(2,C), the trivial homomorphism of 81(2,C) in
Aut R’ (=R *)and the homomorphism of R *{ in Aut
(R ®) = gl(9,R ) which makes the homothetic transformation
of ratio A correspond to A.

Corollary 3.1:

1. R °&8[(2,C )[resp. R * @8u(2), defined by the represen-
tation of weight 2] deforms in these various deformations
into 8u(3,1), 8[(4,R ), and itself {resp. 8u(3), 81(3,R ), and
itself].

2. All the deformations considered above contract into
their initial Lie algebra.
Remarks 3.1:

(a) As R * & 81(2,C) is a stable special (on the field of the
reals) affine Lie algebra, Der(R *@8[(2,C)) = n,.

(b) The invariants Tr[(GC)*] of g, are the contraction

of the invariants of u(3,1) and generate the center of % (R Cf‘)
@81(2,C)).

(c)u(3,1) and gl(4,R ), being reductive with one-dimen-
sional center, are rigid.

Proposition 3.2: Let R *&3l(2,C ) be the subalgebra of g,,

generated by (C,,,L ,,X ., Y3), where (X ) and (Yz) are two
4-vectorsof g, such that [X,,Y;] = 0. So, R *&3[(2,C) de-
forms into R *@u(3,1), 3u(p,q) (p + g = 5, pg+0),
R *&gl(4,R ) and 3[(5,R ); where R *@u(3,1) is generated by
u(3,1) and the complex translations and R *&gl(4,R ) is de-
fined by the direct sum of the basic representation of gl(4,R )
and of its coadjoint.

Proof: (a) Let g, be the second order deformation of
g = R "*&38[(2,C), the bracket of which is given by

[, =0[,1+th+1t, Q)

where 1, and ¥, % ¥R '*,g) %, the space of 2-cochains relative
to 81(2,C), such that;

¢1(CMV,CPG =0, ¢1(Cwao’ = — 8w Y/l, - gyaYv’

¢1(C;1v7 YU) = gv(l Xy + g;to XV’

1/’2(C,¢V’Cpa) = - g,uvao - gva'L;tp - gy(erp - gvpL/za‘
Denoting tL,,, by L Lvs We recognize the commutation rela-
tions of the Lie algebra R *¢U(3,1) of the group C*.U(3,1).

(b) Let g, , be the first order deformation of
g, = R *@u(3,1) above, the bracket of which is defined by

[, ]le=10,1+6¢ €)]
where ¢ is the 2-cochain €€ *(R %,g,)* defined by

WX, X) =1L, ¥X,Y,)=1C,,+18,87C.p

WY, Y)=tL,.

If we denote
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L;v: |6|-1/2Xv: _L;/S, = |0|_V2YV=CV5,

gss =sign(—0), Cs= — gssg®Cpp,

the communation relations of g, , are those of 3u(p,q)
(» + g = 5,pg0), so g, 4 is isomorphic to 8u(3,2) [resp.
8u(4,1)] if 8> 0 (resp. 8 <0)

(c) Let g, be the second order deformation of
g = R *&3[(2,C), the bracket of which is given by (2) with ¢,
and ¢,e € *(R ',g) ® defined by

zpl’( ,uv’ =0, ¢I(CpV’XO’) = —gvaX,u ~gpov’
I/} ( ,uv’ - ngY,u + g,uaYv’
¢2( yw = gprva + gvoLp,p + g,ua'va + gvpLua"

Denotmg tL,, by L 1 We easily identify the commutation
relations of R sG~gI(4 R ) where the semidirect sum is defined
by the direct sum of the basic representation of g[(4,R ) and of
its coadjoint [R * being endowed with the metric tensor

(18,,))-

(d) Let g, , be the first order deformation of g,
= R *&gl(4,R ) above, written in the basis {L ,,; Cus
U,=X,+Y,;V,=X,—Y,}, thebracket being defined by

(3) where ¢ is the 2-cochain € € %(R ®,g,)* defined by
WU, U) =1L, $U,V,)=1C,p+18,:8%Cop,
WV, V)= —

If we denote
Ls,=10["U,= =L =0]"*V,=C.s,
gs=sign(—0), Cis= — gssgaﬁcaﬁ»

the commutation relations of g, , are those of 3I(5,R).

Proposition 3.3: Let [ = 30(3) or 20 (2,1), the corre-
sponding metric being denoted by (y;), and
R 2&(38[(2,C) @ [;) be the subalgebraof U (g;,[;) generated by
(81(2,C),1;) and (4,, ). Then R "*&(31(2,C) & |;) deforms into
o) P +9=17, pq;éO), the metric being (g, ) & (7;)-

Proof: Letg = R *&(81(2,C )@ [;) and g, be the “second
order” deformation of g with bracket

[.1=[,1+1%,
the 2-cochain g&e% *(R '%,g) ? being defined by

l/’(Ai/.nAjp) = Vi - gpuM“
where M, are the generators of [,. If we write

Ly iar; =My L,4,,=01/0)4,, =

- L4+i,;p
8aviar;=Vip

we find that (L ,; 1<a,b<7) verify the commutation rela-
tions of 30(p,q) (¢ + g = 7, pg=~0) with metric (g, ).

Remarks 3.2: (a) All the deformations of the two pre-
ceding propositions evidently contract into their initial Lie
algebra.

(b) One of the advantages of the deformations of the
preceding proposition comes from the appearance of 30(4,3)
which contains g, , [the (only) noncompact real form of the
complex minimal-dimensional exceptional semisimple Lie
algebra]. This Lie algebra appeared in the search for a non-
trivial bond between external and internal symmetries.
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More explicitly,’ 30(4,3) = U(p,g, , ) with intersection
on ), and any other unification of p and g, , is trivial.

(c) Let 8, (1<p < n) (resp. 8, ) be the subalgebra of g, of
basis { v Cpo’ Apa7 Qp + l,/;?} (resp. {L,uv; C Ana; Qlﬁ} .
Then g, = U(p, 8,,...,8,,) and (for all p = 1,...,n)8, deforms
according to Proposition 3.2.

4. IRREDUCIBLE UNITARY REPRESENTATIONS OF
THE GROUP G,

Let R *" (resp. R “") be the subgroup of G, generated by
(4,,) [resp. (Q,#)] Then G, admits the decomposition

G,=R*“{(R°XR-(R"SL2,C))}.

Consequently, the most natural method of determining
its strongly continuous unitary irreducible representations
(UIR) is the method of induced representations' (in stages),
provided that it turns out to have the required properties. In
what follows we shall restrict ourselves to G,; the treatment
of G,, for any n would be similar.

Proposition 4.1: Let G, = H-K, where H (resp. K ) is the
group R “ [resp. N;-SL(2,C)], H is the dual of H, p is the
generic element of H. Then:

1. The orbits of 1/1\, relatively to the action of K, are the
supersurfaces 27 (p* = —m%, p*>0); 2™ (p* = — m?,
P <0y 12 ""(pz—mz) 2°% @*=0,p > 0529 @ =

p*<0), and 29 (p = 0) with the respective stabilizers N3
SU(2), N;,-SU(2), NySL(2,R), Ny-E,, Ny-E,, and N,-SL(2,C),
where m is a strictly positive real number and £, is the two-
fold covering of the Euclidean group E, in two dimensions.

2. The decomposition H-K of the group G, is a regular
semidirect product; the subgroups H and X are closed in G,
and G, is a separable locally compact group.

Proof: The action of K on His defined by

CkTR), B> =<h, k- hk >,V heH,

where k (resp. k ) is an element of K (resp. H yand{ , >
denotes the action of H on H, defined here by

<huh > = expi(pt), wherepel/l\, teH, pt=g, t'p".

If we write k = {0, ¢, (a,), (¢,), 4 }, the action of k on #
reduces to: peH—»D (4,1) (A ) p; this gives the normal orbits of
the Poincaré group."

Remark 4.1: In view of the physical applications we
wish to draw from our model, we shall confine ourselves in
this article to the determination of the UIR of G, for which
the Poincaré mass-operator — g** P, Py is strictly positive
(and Poincaré energy is positive, for instance). So it is
enough to determine the UIR of the stabilizer N, - SUQ).

Lemma 4.1: Let G = H-K, where H (resp. K ) is the
groupR °xR 12 [resp R § 12.8U()), & = {0, d, (4,), 0, 1] the
generic element of # = R UXR (2 d ¥ (u<v) the compo-
nents of d and DG the matrix w1th the generic element

= g4,4*", where d*” = d* = d **), Then the action of
k {0,0,0,(g,), 4 }eKonHls given by

k({0,d, (5;,),0,1}))={0,d", (6",), 0, 1},

where
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D'G=D(}4) A)DGD(3,4) 4,

b;=D(}3) (4)b;+ D'Gy,

Proof:Leth = {0,¢,(a;),0, 1}€H. The action ofHonI/:I\
is defined by

Ry = expi(8¥ (biea)) + dec),
where

bia,=g,bka and dc= (888)[#v][pa]¢i lvgloo),
g being the metric tensor of Lorentz and {(g ®g)[#,,][pa] } the
Lorentz invariant metric tensor of R }° obtained by restrict-
ingg®g(definedonR*@R)toS(R*®R*).

The explicit determination of the action of K on His
facilitated by the change of basis, {C,,,—C,,; C,,—2C,,,, if

45
©v}, to which corresponds the factor B (equlvalent to the

factor 8 of Proposition 2.2) which is defined by

BE (") = B (@e g ) + @ q)*)
and by the use of the fact that D (1,1) & D (0,0) isequivalent to
D3, e DAL restricted to S(R*@ R ). Q.E.D.

Notation:

U(1)-Z, notes the twofold covering of the semidirect product
defined by

(pd) (@' d)=(p+dp'dd") V geU(1),
V deZ,={ + 1};

Q; denotes the (eight-element) quaternionic group [(o,) be-
ing the three Pauli matrices): Qs = { + 1; +i 0, (1<I<3)};
Q. is one of the following cyclic subgroups of Q,

C.= { + 1;-_{—i0’2}, C;: { + l;ii03}~

Lemma 4.2:Let G = R [*SU(2). Then SU (2) operating
on R 0, dual of R }° admits as stabilizers the following
groups: SU(2) [1}; U(1)-Z, [1]; U(1) [2); Q. [1]; €. [13; € [1];
Z, 2], where the number in brackets is the number of orbits
having the same stabilizer (up to isomorphism).

Proof: According to Lemma 4.1, the action of SU(2) on
R [ is defined by

D'G=D(}3)A)DGD(3,1)A™), 4eSUQ). (4)
Now DG is written
(D] —D )

D —d/
where [D] (resp. B ‘D ) is the symmetric 3 X 3 matrix with
generic element d ¥ [resp. the vector of components (d **, d *,
d *%); the transpose of D ]- Sothe problem is reduced to solvmg

the system:

[D]=DA)D]ID'A™) (inR°),

D'=D'A)D (inR?Y),

d'*=d* (inR),
where D '(A4 ) is the representation of 4 in the representation
of weight 1 of SU(2).

The actionin R °being defined by a relation of similitude
between real symmetric matrices with D ! (4 )eSO(3), the or-
bits are characterized by the three possible Jordan forms of
suchmatrices,namely 2 (1,4,4 ),2 (1,4,4,),and 2 (4,,4,,4,).

v~
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The orbits in R ° are evidently the spheres S, of radius k0.
As for the orbits in R, they are, by deﬁnition, reduced toa
point {a}, a€R, and therefore the orbits of R ;° are obtained
by considering the Cartesian product X X {a} where X
ranges over the set of orbits in R ® and a ranges over R. So it is
sufficient for us to determine the orbits in R°* = R X R °.
First, the orbits in R * having a trace reduced toa pointon R ¢
or R are the following Cartesian products of orbits:
NAAA)YXS, (k>0), 2@AAA4)X[0},
2(AAA)X0}, 2(A1AA:)X {0}

The other orbits can be obtained in stages, in a way analo-
gous to that of Ref. 14, as follows:

For each orbit {2 of R ¢ there are in R X R * as many
orbits as there are orbits in .S, under the action of the stabi-
lizer of any particular point of £2. We characterize an orbit of
R *X R *byapoint [D],, of 2 and an orbit w of S, generated
by the stabilizer of [ D ] ,; we write this orbit [2,w]: It is
generated by ([D ], , X), Xew.

In this way we find the following orbits in R }°
2@AAA)X (0} X (a),

NAAA)X {0} X {a), 2ALAA)X{0] X {al,

QAAAIXS X {a}, [2AAL)Z (k)] X |},

[2(AAA)Z O] X {a}, [2(AAA).2, ()] X{al,

[2 A AA)T P X {a), [2AAd)TPIXal,
with their respective stabilizers: SU(2), U(1)-Z,, Q,, U(1),
u(), C,, Z,, C,, and Z,.

Here S, denotes the sphere of radius k> 0in R % 2 (x°)
is the union of two small circles of S, in the planes + x*;
0<x<kand (I"?, I'{?)arethe two types of orbits of Q; in
Sk-

Proposition 4.2: Let us keep the notation of Lemma 4.1.
Let 4 be any element of R ’XR ;> and S;; its stablizer rela-
tively to the action of R ;- SU(2). Then:

1. If detDG=40, S; is isomorphic with one of the following
groups:

SU@) (1}, UQ1)-Z (1],

G 1), cil, Z[2].

2. The detDG = 0, S;; is isomorphic with one of the
following groups:

R*X(R*SUQ)[1],

R*xSUQ)(1],

RP*XR°(U(1)-Z,))[1], R*XR*(U1)-Z,))[1],

R(U(1)-Z,)[1], R*(U(1)-Z,)[1],

RIx(U(1)-Z,)[1], R°X(R*UM)I[3],

u) [2], @ [1],

R°.SUQ)[1],

RSU(D) [2], R*XU(D) [3], RPX(RSUM)[4],
R*XUQ) [5]
R*X(R*Qy [1), R™Q, [1], RXQy [1]

R°X(R*Q,) [3], R°XQ, [3], R*X(R Q) [5]

R3><Q4 [5]9 R}'QA [3])
R"™XZ, [3], R°XZ, (9], R®XZ, [16],
R3*xZ, [14],
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where the number in brackets is the number of orbits having
the same stabilizer (up to isomorphism) and the semidirect
products R *.L [L subgroup of SU(2)] are defined by the
restriction of the representation @, _ D | (where D)= D",
for all q), from SU(2) to L.

Proof: We first determine the orbits in R }>X R ;* under
the action of the group R ;2-SU(2) and then the respective
stablizers. To do so, it is necessary simultaneously to solve
the following three linear systems:

b;=D(33)4)b,+D'Gg, i=123. )

According to the demonstration of Lemma 4.2, we have
to distinguish two cases according as det DG is zero or not.

L. detDG;#O If we denote by £2; (1<i<9) the nine orbits
of SUQ)inR , the Cartesian products .(2,.><R »* are orbits
inRPXR}? Ifh = {0,d,0,0,1}&f2,X R }?, the relations of
Lemma 4.1 show that S,1 is isomorphic thh the stabilizer of
Q..

2. detDG = 0: We use the previous method of determi-
nation in stages of the orbits; for each orbit £2; of SU(2) in
R}, we choose a point D YGef2, and then we calculate in
R }? the orbit X of the stabilizer of D ?G. So, for each £2,, we
have to discuss the conditions det D %G = 0 and then solve
the linear system (5). In this way we finally obtain eighty-
nine types of orbits, (£2;,X ), generated by (D %G, X} _ 1b),

x3_ bgX (the interested reader may obtain their list from
the authors). The corresponding stabilizers S); are isomor-
phic to R %X (R .L ) (0<p<4; 0<g<3), the semidirect
product being defined by the restriction of the representation
D, (where D = D', for all g) from SU(2) to L.
QE.D.

Proposition 4.3: The stabilizers of the semidirect pro-
ducts R *%.L of the preceding proposition are isomorphic to
one of the following groups: SU(2), U(1)-Z,, U(1), Qs, 0. Z..

Remarks 4.2:

(a) All the semidirect products encountered in this
method of induction in stages are regular since for each of
them a Borel set can be constructed, meeting each orbit at
one and only one point. So we shall obtain all the UIR of G,
(such that the mass-operator of the Poincaré group be strict-
ly positive) knowing those of the groups mentioned in Pro-
position 4.3 (which are known) by the Mackey method.

q~1

(b) If a group G is a semidirect product of two closed
unimodular subgroups H and X, H being normal in G, it
follows from Ref. 15 Chapter II, Paragraph 7, that G is uni-
modular if for every function fe.¥ ,‘,(H ) we have
Sufkhk ™) du(h) = §g f(h)du(h), where du is an invar-
iant Haar measure on #. It follows, on applying this proper-
ty in stages, that all the semidirect products encountered are
unimodular and that their invariant measures are obtained
by simply considering the product of the measures of their
factors.

(c) The orbit 227 in R * obtained at the ﬁrst stage of the
induction and one of the orbits 2’ in R ;2 obtained at
the second stage can be regrouped to constltute an orbit

= (27,2 inR*XR "XR }? relatively to the action of
R ¢ *SL(2,C). This amounts to the decomposition G, = H-K,
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where H (resp. K ) is the group R *X R °X R !* [resp.

R} SL(2 ()}, and obviates the necess1ty for going into the
conditions, all the UIR of G; looked for are obtamed (up to
unitary equivalence) by choosing, for every orbit 2 of H, a
point A.f2, an arbitrary function of {2 in K which makes I';
correspond to hef2 such that I' h(110) = h andan UIR L of the
stabilizer of &, say K ; i, acting in a Hilbert space 77°; . These
representations are defined in the Hilbert space .%2 A02.57,)
of functions F on {2 with values in #°; such that
SallFO), duth) < o, where du(h) is an invariant mea-
sure under K concentrated on £, by

(UGk)F YR = AL 7 Ty i )F (K 7 E)

5. REPRESENTATIONS OF THE LIE ALGEBRA g, AND
MASS SPECTRUM

In order for the interpretation that is the outcome of our
model to be coherent, we must first point out the physical
relevance of the generators of group G, and also explain the
construction of the mass operators which we adopt.

Let us point out first of all that all generators of G, are
relativistically covariant since they are invariant under
translations and transform, under the action of the Lorentz
group, like a Lorentz tensor. Furthermore, for each fixed
pair (u,v), (4,,,0;,) (1<i, j<3) are “canonically conjugate”
relatively to the intrinsically internal variables. So it is possi-
ble to interpret the 4,, and the Q,, (and the C,,, which de-
pend on them algebralcally) as descrlbin g the internal dyna-
mics of a system of composite particles (the components of
which may not exist in the free state) in the following way:
The quark (resp. antiquark) energy—momentum will be giv-
en by an “‘external” part 7,, and a*“internal” part Q,, (resp.
4,,). Similarly, we shall assume that the mass-operator for
the composite system can be written (at least in a sufficient
approximation) as M * =M + M}, where M§ =T, T* s
the relativistic free mass and M 7 the mass-splitting term due
to the description of particles as composite system. This
mass-splitting term will be given by some combinations of
the internal components (Q,,,4,,) which we shall explicit in
the following various cases. In what follows, M 2 will be
called (square) mass-observable, as it is this term that, in a
suitable representation of g,, will give the mass-spectrum.
The various mass-observables which we consider in the fol-
lowing are symmetric homogeneous polynomials of the sec-
ond degree in the conjugate canonical variables which de-
scribe the internal dynamics. We shall thus have a
description of the creation of energy from the internal mo-
tion, the particles being the excited states of an energetically
more fundamental system.

In a way, this interpretation seems to be a generaliza-
tion of the standard description of systems of # quantum
particles possessing only properties that have a classical ana-
log. As a matter of fact there exist, for such systems, # pairs
of canonically conjugate variables (P,Q), ;.. representing
b, such that the Hamiltonian (and also every other physical
observable) is a function of it. In our model, n,,, which char-
acterizes the internal dynamics, in a first approximation,
would generalize by, .
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This interpretation has also the advantage that none of
the generators is superfluous, contrarily to the various rela-
tivistic generalizations of the SU(6) model (cf. for instance
Ref. 16).

Now let us pass to the examples. We shall give four
representations of the Lie algebra g;. The first is integrable to
the group G, and the three others are not, but are integrable
on the Poincaré subalgebra.

A. Integrable representation of g, (harmonic oscillator
model)

Let p be the representation of g, defined as follows: The
space of the representation is the completed tensor product
R (2 o o ) ® .Z*R’), where £2 (2 "o A ")is the carry-
ing space of the UIR D *(myy) of the Pomcare group of posi-
tive energy, mass m,> 0 and spin j, 2 ",'r‘z’ is the one-sheeted
hyperboloid (p,p* = — m3; p*>0),
du(p) = (p? + md)"*d B is a measure concentrated on 2 "7’
invariant by SL(2,C), and 7, the carrying space of the re-
presentation of weight j of SU(2).

If we denote by the same symbol a generator (of Poin-
caré or of g,) and its representative, the generators of g, are
represented by:

,_I®M

v

I \—
A x@P, =i—3P,
u qu (8xj) "

T,=IeP, C,=I8PpP,

where [ is the identity operator in ¥R *) and ® designates
the closure of the tensor product, acting in the space

D D (moy)) ® (R *),where Z (D *(m,y))istheGarding
domain of the representation D *(im,y) and #'(R *) is the
Schwartz space.

Proposition 51:Let2 =" "5 (2') be the orbit in

R XR P +? characterized by the stabilized point
h0 = po,D G 0 0,0} and the stabilizer R *.SU(2), where

0 0
0 —m -

0

Then p is contained in the differential of the induced repre-
sentation, starting from {2, by the UIR of R *-SU(2) associat-
ed with the trivial orbit.

Proof: Any point of {2 can be parametrized by the
multiple

( D (345400 (3,5)(A)D°GD (3,54 ;7 D,

Spapu(,C )

where p—4,, is the field of Lorentz transformations in the
canonical formalism,”’ which associates with every pe’y m

oMot +p P tip
= [Zmyp* + mo)] 12( p' — ip? mo+P"—PJ)’

4,e8L(2,C) (6)
such that D (4,4)(4,)(o) = p-

It follows that £2 depends on six real parameters,
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(@), with p,p* = —m}, and xgR (1<i<3)].

In what follows, when clear from the context, D (3,4) (4 ) (x)
will simply be written A (x). We can take as field ~—1; [such
that I'; (ho) = R

Thi= (12<1A( m(-i_ ‘xi>’A"-)

3 0
oamons 1)

1

if

The UIR of G, induced by that of R *-SU(2) associated with
the trivial orbit in R * will be written

[ U (t_O,QD’(QOj ’(QOj)’AOF ] (E’(xi))

= expilpt, + d-(co — &) + 8by-ay]
XDUA ;7 "AeA 4 1)
XF (A g '@, +mo[d, ()],
where
ar’=pp’, bi=xp,

a4" = Léij[("m ® q_oj'yw + (ag;® q_oj')m]'
D/ is the UIR of SU(2) of weight j operating in 5%;;
FeL* (N "J‘r" XR%%) and dv=dudxdx.dx.

Differentiating this representation we obtain for infinites-
imal generators (defined on the space of its € * vectors):

T,=Pu Ay =%y
. = )
= lﬁ/\ Vﬁ + S: Qj‘u. = ’('a‘;;)Pw
N= =@ +m)@AS) +ip'V,,

C..=0@), and C,,=2pp, usktv),
where
M= M .M M.), N=(N,N,N)), M;=4e;L;,
a 8 a e
N,- = Li49 Vﬁ (ap ap ‘—) S = (S19S2’SJ)3

(S), i3 are the infinitesimal generators of the representa-
tion D/ of SU(2) and A denotes the vector product. Q.E.D.

In this framework we shall take for the mass-splitting
operator

Mi= —guvéu(Qi,quv'{'Aiijv)=M2Q+Mi‘ )

The internal degrees of freedom are thus assumed to
contribute to the mass-splitting via a term which is (for each
space—time direction) the Hamiltonian of the (three-dimen-
sional) harmonic oscillator. This term can be viewed upon as
the sum of the self-interactions of the quarks and the anti-
guarks, each of these self-interaction terms has a continuous
spectrum, but the binding of both, described here by the
sum, creates a discrete hadron mass-spectrum. This mass-
observable is represented by the operator mj( — 4 + X?)
which has a discrete spectrum and leads to the mass-formula

m. = mo(zn + 3)1/2’

n

where 7 is a nonnegative integer.
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B. Local representations and mass-spectrum

Let us point out first of all that the use of the local
(partially integrable) representations in this context is justi-
fied by the following general remark (cf. also Ref. 17): If the
symmetry “differentiates” (naturally) locally, the dynamics
(a fortiori the internal dynamics), it, on the other hand, does
not necessarily “integrate” globally; in fact, direct use of the
theorem of Noether leads (by differentiation) to observables
obeying laws of conservation; conversely, if we start out
from an algebra of observables, each of them can generate a
one-parameter group, but the dynamics by no means re-
quires that there is global integrability; now in a situation
such as this, it is the dynamics which must take precedence.
As for the method of investigation of the local representa-
tions of g,, it is analogous to that Ref. 18, the definitions of
which we adopt. They are constructed upon the differential
of a unitary global representation of g;, carried out in a cer-
tain functional space, by truncating the domain of variation
of the variables with suitable boundary conditions in order to
destroy integrability. These boundary conditions can also be
considered as reflecting the internal dynamics (or even the
internal geometry) of hadrons.

We are going to study here three irreducible Poincaré
partially integrable local representations p * (1<i<3) of the
Lie algebra g,, related to the integrable representation p de-
fined above. By irreducibility of p ' we understand Schur-
irreducibility, namely that every bounded operator commut-
ing strongly with some integrable observables (i.e., with their
spectral resolutions) and weakly with the others is a multiple
of the identity operator. More precisely we require the com-
mutation with the unitary group corresponding to maxi-
mum integrable Lie subalgebra of p  [% (g;)] and commuta-
tion with the operators of p ' (% (g,)] on the common
invariant domain. Note that the integrable Lie subalgebra of
p ‘(% (g,)] need not be the representation of a Lie subalgebra
of % (g,), since (as will happen for p* and p°) some elements
of % (g;) can be trivially represented (i.e., by multiples of the
identity). In the examples that we consider it will be enough
to restrict ourselves to elements of degree less than or equal
to two in p [ % (g,)]. For each p /, we introduce two domains:
The domain of definition of the representation, and the
mass-spectrum domain on which the mass-observable con-
sidered is represented by an essentially self-adjoint positive
operator with a purely discrete spectrum, consisting of iso-
lated eigenvalues. The former is a subspace of the latter.

(@) Let &' = G202 2. ) 8 LXQ), where Qis the
cube (0<x;<a). We write S 3 = AR *,57) @ € 5(Q),
where ' AR *,5") is the space of the rapidly decreasing ¥
(inp) functions of #2(£2 "*,% ) and % &(Q ) is the space of
¢ = (in X) functions, vanishing together with all their de-
rivatives on the boundary of Q- S} is dense in #” and is a
common invariant domain of the infinitesimal generators of
the representation p on which they are symmetric. This de-
fines a representation p’ of g, on % by symmetric operators.

Now, let B be an arbitrary bounded operator. We shall
make use of the strong commutation with the elements p'
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&L, pNT), p'@"T,Q;) which defineon S |

= SARH)® ¢ 7(Q), where € 7(Q) is the space of the
% * (in X) functions periodic on the boundary of Q together
with all their derivatives, an integrable representation'’ of
this subalgebra R * @ [R *&8[(2,C)]. This implies that B must
satisfy

806 exo(iZZ2)| = 60w, @9 exp(i2 1z ),
a a
where [, (3,5) denoting a basis of .12 'f',%)]
[ () eXP(i—:Zifz’i’),leN, — j<s<j,AeZ 3] cs}!
a

is a basis of #”'. Finally the weak commutation with
pig*'T,A,)and the density of S 5 in 77 show that Bmust be
scalar. So p' is a Schur-irreducible representation of g;.

Denoting by ¥ the unitary transformation on #” which
maps fon exp(3i%?)f, V(S }) contains an invariant dense
common domain of analytic vectors for each of the gener-
ators L,,,,T,,, 2}_ (Q,, + 4,,) which is:

@ © __ ! ‘Z’eif:/ZeiZﬁﬂ-)?/a;we@ w(D +(m0‘]'))”7€z 1 }

where & (D *(me))) C.% 4R *°,7) is the set of analytic vec-
tors corresponding to the representation D * (m,,/) of p. Then
(see Ref. 17) these generators define on ¥ (S !) a representa-
tion of R *@¢28[(2,C) integrable to a unitary representation of
the group R *.SL(2,C).

The squared mass-operator

=~ 3, + 4, S@+4) ®

i=1 i=1
is an invariant of R *.SL(2,C ). It is represented in this repre-
sentationp' by mg{ 2;_ ,(id, + x,)}?, which is essentially self-
adjoint on ¥ (S }) and has a discrete spectrum which leads to
the mass formula

m,, = 2mka’m,,
where & is a positive integer.

(b) Let #? = #2(2™ .5 )8 £*(C), where Cis the
cylinder

{(x1,x0,x,),0<x] + x3<a® and 0<x,<b .
ZLYC) decomposes into
LHC) = (fz([O,a]),rdr)g f/’z(T,dﬁ)g Z[0,6 ],dx5),

where T'is the torus [0,27] and x, = r cos 8, x, = rsin 6. Let
S3=5,R ) e C([0a))e € 5(T) o €5 ([0b])
be, where ¢ § ([0,a]) and €5, ([0,6 1) are the spaces of the
functions € < (in r or x;, respectively) vanishing together
with all derivatives at the end points of the intervals, and %
(T) that of the ¥ *-functionson T-S }, whichis densein 57,
is a common invariant domain of the infinitesimal gener-
ators of the representation p, on which they are symmetric.
This defines a local representation p* of g; on 7 by symmet-
ric operators.

Now, let B be an arbitrary bounded operator which
commutes strongly with p*(L,,),0*(T,), and p*(g"*T,Q;,)

Daniel Beau and Salah Horchani 1707



which generate the group P X U(1) and weakly with p?
(g""T,A;,). Then B reduces to

BY B (ke ® e
= ¥,(B,5)e>™ B "J (k r)e £ ",
where
(¢, (BsW,, (k,r)e = "%e?™/" with leN, — j<s<j,neN,
zeZ.k, verifying J,(k,a) =0}

is a basis of #7, J,, being the Bessel functions, solution to the
Sturm-Liouville problem relative to the vibrating circular
membrane.” The two operators p*(Z} _ 1g*'Q,,Q,,) and
p(g""(Q,, 45, — @,,4,,)) generate unitary representations
of U(1) commuting between themselves and with the group
P xU(1) represented above. Qur assumption of Schur-irre-
ducibility implies that B must commute with these groups
also, and therefore

B'J (k,r)et™ =b(+ nk ), (k,r)e* ™’

Finally an argument analogous to that of (Ref. 20 Appendix)
using the weak commutation with p*(g*"T,Q, ) shows that B
is scalar. So p? is a Schur-irreducible local representation of

g; on 7.

Assuming (at least in a first approximation) that the
“internal momenta” Q,, of the “quarks” and 4,, of the “an-
tiquarks™ add linearly and that there is no contribution mix-
ing the different “colors” i = 1,2,3, we are led to consider the
mass-splitting operator,

M= —g"86%Qy + 4,)Q; + 4,). )
It is represented, in the representation p?, by the operator
3
Mi=m§ Y (0, + x) (92)

j=1
which is essentially self-adjoint on the domain V' (S 2), where

S1=LUNTH ) e 5 ([0a]) e C F(T)
® ¢ . ([0,b]),

¢ ([0,a]) being the space of the functions ¢ = (in r), van-
ishing at the right endpoint a, and € 7, ([0,b ]) being that of
the functions ¥ ~ in x, and verifying, together with all their
derivatives, the boundary condition of periodicity. M 2 has a
discrete spectrum which leads to the mass formula

M, = mo[k 2 + Qmzb Y],

where neN, k &S, = {4;/J,(Aa) = 0}, and zeZ (all integers).
This model could be generalized by introducing, instead of
8Y, different tensors 77 in (9) which by their nature would
give rise to internal quantum numbers, for instance.

(©) Let 7™ = L2 (2" )% LX), where S is the
sphere {XeR ° such that |¥|<a}. .Z"(S) decomposes into

ZYS)y = 70a],rdR s S F(6.9),
JjeN
where (7,6,p ) are the spherical coordinates and 7, (6,p) is
the carrying space of the UIR of weight j of SO(3). Let S be
the dense subspace of ¥ defined by
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So=S4ARH)e €3([0a)) e Y (0.9).
JjeN
S 3 is a common invariant domain of the infinitesimal gener-
ators of the representation p on which they are symmetric.

This defines a local representation p* of g, on #7 by
symmetric operators. The proof of the Schur-irreducibility is
analogous to that of the preceding case. First we consider a
basis of #”, defined by the following functions:

VB, 1/2(k1’)an,(9,¢),
leN, —I<ml, and kgS; = {AJ,, ), (Aa) = 0}.

TheJ,, ,,, are the Bessel functions, solution to the Sturm~
Liouville problem relative to the vibrating sphere,’ and the
Yf,,l(e,(p) are the spherical harmonics. Now we use the
strong commutation with p*(L,),0%(T,), p*(8*'67Q,,0,,),
which generates a P X U(1) group and p(L;), where
L;=g"(Q,A;, — Q,A4,) (1<i, j<3). The L; do not close to
a 30(3) subalgebra of % (g,); but since p’@*'T,T,)factors out
inp*(L ;) and is a multiple of identity, the p*(L ;) generate the
quasiregular representation of SO(3) in the ¥-part of %7 .
We therefore require that B commutes with the above uni-
tary representation of P X U(1) X SO(3); weak commutation
with p*( g#'T,Q,,) will then imply that B is a multiple of
identity. Let

S.=2L0QTX)eE(10a))e Y, (60,p).
leN
The mass-splitting operator M ; defined by (Sa) is essentially
self-adjoint on the domain V(S ?), where V'is the previously
defined unitary operator. It has discrete spectrum which
leads to the mass-formula

(IeN,kgS,).

Remark: Using also a three-dimensional “internal
space” but a local representation of the 11-parameter Weyl
Lie algebra, and taking for total (squared) mass-operator the
second order invariant of the (integrable) Poincaré subalge-
bra, Snellman® recently obtained a discrete mass-spectrum
in terms of squares of the zeros of Bessel functions relative to
the vibrating sphere. The technique used for p* and g° is
similar, but these representations are Schur-irreducible and
our interpretation is different.

My, = molk;|

6. POSSIBLE INTRODUCTION OF THE ISOSPIN

Let G,-SU, (2) be the Lie group whose Lie algebra is
U(g;,8u,(2)) defined by the method indicated in Remark
2.1(b). SU, (2), commuting with the external symmetry, will
be interpreted as being the isospin group. As for the relativis-
tic spin, we shall continue in this article to take as our defini-
tion the one introduced by Bargmann and Wigner (cf., for
example, Ref. 13). In this interpretation, the spin remains
linked integrally with the external symmetry; but the mass,
while depending on the external symmetry, is linked with the
degrees of internal excitation of our composite model. In this
section we are going to determine the isopin content of the
two interaction operators introduced in Sec. 5 A and 5 B (¢),
the associated models of which shall, in what follows, be
called respectively the harmonic oscillator model and the
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vibrating sphere model. A glance at these operators M ? and
formula (10) below easily shows that the eigenfunctions of
M ? will be classified by a principal quantum number con-
nected with the internal excitation level and a secondary
quantum number associated with the weight of an UIR of
SU,(2).
A. Harmonic oscillator model

Let # = £2(Q"™.5) 8 LR 8K,
where /%7, is the carrying space of the representation of
weight & of SU, (2). In 7, we can define a representation @
of g,&8u, (2) by symmetric operators, which is Schur-irredu-

cible and integrable to G,-SU, (2), as follows: The common
invariant dense domain of the infinitesimal generators of w is

DD (mo)) ® S (R) @ T,

on which the generators of g, are represented by the basis of
the representation p of Proposition 5.1 and those of 8u,(2),

namely I = ({,,1,,1,) = (I5,151,1,,), are represented by
I=3+iZAV, (10)
where & = (0%,0%,0%) is the basis of the representation D * of

8u, and V; = (9/9x,, 3/3x,, 3/0x,).
Let 77, be the eigensubspace associated with the eigen-
value m? = mj(2n + 3) of the interaction operator
— g46%0,,0;, + 4,4 ,,) which is represented in » by
M*=m}(— A4 + ). 5, is written

H= L2 H) S E(n) e I,

where E (n) is the eigensubspace associated with the eigenva-
lue 4, = (2n + 3) of the operator — 4 + 3.

As SU, (2) does not operate in .27, (2 7} o ), all we
need to know in order to elucidate thei lsospm content of 7,
is the decomposition of the unitary representation w; of
SU,(2) in E(n) ® 7, into irreducible components. Now A,
represents the energy-spectrum of the three-dimensional
harmonic oscillator, so the degeneracy of the level A, is equal
to the dimension of the representation (#,0) in the notation of
Ref. 21) of the group SU(3), which implies that dimE(n)

= (n + 1)(n + 2)/2. Starting from the decomposition of the
restriction of the representation (#,0) from SU(3) to SO(3),>
we obtain:

n/2 n—2s+ k .

o;= Z D' if n iseven,
s=0i=|n—2s— k|
(n—1)/2 n—2s+ k i

o=y > DY if n isodd.
s=0 i=in—25—k|

As for the spin states of the eigenvectors of M %, they are
all equal to, as the restriction of the representation w to the
Poincaré group decomposes on 5, according to
I+ Pk DREE DD (my,)), where D (mof) = D *(moy)
for all a.

Let us detail the cases £ = 0,1. To a mass m?

= m}(2n 4 3) correspond:

(a)if k =0, (n + 2)/2 [resp. (n + 1)/2] particles with

isospin n — 2s, where s = 0,1,...,n/2 [resp. s = 0,1,

1709 J. Math. Phys., Vol. 20, No. 8, August 1979

.»(n — 1)/2]if n is even (resp. odd), each one having the
same spin j;

(b) if k = 4, (n + 1) particles with isospin (25 + 1)/2,
where s = 0,1,...,# and the same spin j.

B. Vibrating sphere model

Let¥ = .77 (027 o f/) 8 .Z%S) ®2’/k In %, wecan
define a representation w of g;(+§u ;(2), by symmetric opera-
tors and Schur-irreducible, as follows: The common invar-
iant dense domain of the infinitesimal generators of w is
S 3 ® #°,.on which the generators of g,&-3u, (2) are represent-
ed as in Sec. 6 A.

Let #7s,k, ) be the eigensubspace associated with the
eigenvalue m? = mgk 2 of the interaction operator
— 8" 8%Q,, + 4, 0Q;, + 4,,) which is represented in » by
M*=mi3}_ (id, + x))’. %(s,k ) is written

Hsk) = L2 H)SE (s,k) @

where E (5,k, ) is the subspace of .#°%(S') generated by the
vectors

r‘”zexpi(rz/2)-/s+ 1/2(/“;’)an.(0’¢’ ),

As in the preceding case, in order to elucidate the iso-
spin content of #°(s,k ) it is enough to know the decomposi-
tion of the unitary representatlon @, of SU2) in
E(s,k, )®2/k Now W= 3k s — ,(/D . So the states of
H(s,k,) are all of spin j and mass m,|k, | (k, being determin-
able approximatively for large masses using an asymptotic
representation of the Bessel functions) and their isospin (for
the particular values k = 0,1, for example) is:

(@l=s, ifk=0,

(byI=1 (resp. =5+ 1ifs=0(resp.s>1) and
k=1

—s<m <.

7. DISCUSSION AND OUTLOOK

After having traced the experimental trajectories
I = f(m?) and I = f(m) (with constant spin) for those parti-
cles which are best established at present® it emerges that
our model presents a real potential interest, as the observed
divergences from the theoretical trajectories (both those as-
sociated with the harmonic oscillator model and those asso-
ciated with the vibrating sphere model) are not significant
enough to invalidate it; all the more so, as we have only taken
into account a restricted number of quantum numbers. The
presence of high isospins which do not correspond to ob-
served particles could be accounted for by the fact that they
are associated with particles heavy enough to decay very
quickly by means of strong interactions. Furthermore, the
fact that this model permits defining a denumerable infinity
of fermions (or of bosons) of integer or half-integer isospin
(in an irreducible representation) brings up the question of
the interest of the “multiquark” theories (“‘colored,”
“charmed,” ), especially as there are some very strong pre-
sumptions as to the existence of massive hadrons which do
not fit into the framework of the present multiquark
theories.
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We end this work by mentioning briefly a few remarks
and suggestions concerning its possible continuations:

(1) The relation I = &* + i% A V; giving the isospin can
be interpreted as follows: 3* represents the isospin of the
basic (nonexcited) state and i¥ A V. is the orbital momentum
of internal excitation creating the real isopin. If a mass for-
mula were desired depending explicitely on the isospin one
could add to M 2 an interaction of the (iso) spin-orbit type of
the form 1,3 ¥, where 3 ¥ is an appropriate function of the
internal canonical variables (4,,,Q;,). For instance, if we
take the mass-observable M* = M ; — gI, .3 ¥ (g being a cou-
pling constant) with 3, = g*"(4,,0,, — 4,,Q,,), we obtain,
in the harmonic oscillator framework, the following mass-
formula
m=miQn +3) +gm3 I+ D+ 11+ 1)—kk+ 1],
with

I=n—2s, 0<s<integer partof n/2,

Iefn —2s+kn—2s+k—1,.,|n—2s—k|}.

(2) In another perspective it would be interesting to de-
fine (working from internal canonical variables) operators
X ;£ of the creation and annihilation type, such that the in-
ternal quantum numbers (including the isospin) be functions
of them, and to deduce from the latter the internal quantum
number content of the various mass-formulas considered (as
we have done above for the isospin), or mass-formulas which
depend on them explicitly as in the preceding paragraph.

(3) Certain subalgebras of g, (or of g,&[,) the deforma-
tions of which we have studied (such as, for instance,

R 3@&3u(2) and R *&(81(2,C) @ [,)) are likely to contain a de-
scription of the internal quantum numbers. The study of
their behavior in the representations considered could lead
to an elucidation, from another viewpoint, of the internal
quantum number content of the various mass-formulas
proposed.

(4) It would be interesting to study other local represen-
tations of g, in particular those deducible from the differen-
tials of the induced giobal representations, the inducing sub-
group of which (cf. Proposition 4.2) admits SU(2) as
homogeneous factor (which is linked with the spin), such as
the ones reported in the Appendix. It is probable that for
some of them, contrary to those studied in this paper, a spin
spectrum might be found which would lead to a group theo-
retical formulation of the Regge trajectories. More simply,
in view of the results obtained in this paper, the fact that the
group H,-SL(2,C )* admits (nonfaithful) UIR such that the
Poincaré mass is a strictly positive scalar and such that the
spin-spectrum is composed of all the integers or all the half-
integers presents another possibility for arriving at a formu-
lation of Regge trajectories by building representations of g,
[or g;&3u, (2)] according to our analysis (cf. Sec. 2) for which
the restriction to the Poincaré subalgebra gives a spin-spec-
trum, as in the Flato—Snellman model ( Ref. 25, Sec. 2 C).

(5) Let us mention in conclusion that the methods em-
ployed in this paper could equally be considered in the
framework of the algebras of supersymmetries by adjoining
anticommutation relations to the commutation relations of

b,
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APPENDIX

We construct here the differentials of the UIR of G,
associated with the two classes of orbits whose stabilizers are
SU(2) and R * X SU(2) respectively. These representations
might be useful for a spin-spectrum. The notations are those
of Sec. 5 A.

(a)Let 2 = (02" ,2(AAA)X {0} X {a] XR }?) be the
orbit whose stabilizer is SU(2) and whose stabilized point is
hy = (po,D °G,0,0,0). Any point 4 of {2 can be parametrized by
the multiple

3
(4,(p),4,D°GA ', A>:<1b4),

where p, = (0,0,0,m), p—A4 » is the field of Lorentz transfor-
mations (6)
(A1 0 )
p-(1 )
0 —-a

where [4 ] is the scalar matrix defined by 4. So {2 depends on
the following fifteen parameters:

(p* with pp' = —m’bleR; 1<i<3,1<u<4).

The field A—1"; of 2 in R ;>-SL(2,C), which permits
passing from the stabilized point 4, to any point 4 of {2, can
be written

3
r;= ( X 4,D°G"4 1174.,A,,)).
i=1 - -
The representation of G, induced by the representation
D/ (operating in ;) of the inducing subgroup SU(2) can be
written:
{ U (£5,¢0(@0: ) Q_()i)’Ao) F) (E’(b_i)lgigS)

= expi{pty + d-(co — ) + 8" by -aa}

X DA, A, 1) F A5 'p,

X4y (b, — DG‘Z_O:‘))K:'(J)’
where DG = 4,D°GA ; ', d is the vector of R, defined by
DG. The space of the representation is .2 (12" X R \,.7%")
where
dv =@ +myidp [ dbt.

1<i<3

lapucd

A basis of the differential (operating on the space of the
¢ *-vectors) of the representation U is given by:

Tju = P,u’ Aj/l = bj;l’ C/l\' = d;n"
d ’ J , d : d )DG
ab! b2 b} b

(0 0n 0 Qi) = i(

M=5+il(AY,) + 8GN},
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e

N= —(p+m)y'@GAS) +i(p'V,; + B},

where B is the 3-vector of components

5“(1)45 + b, ‘9) 1<j<3.
EYRRLFTY

(b) Let £2 = (27 2 ") be the orbit whose stabilizer is

i=

R’%xSUQ2)= [( >3< (;)?),A ); AGSU(2)]

and whose stabilized point is

. 3 /0 (A] 0
hy = (Po,DOG, X (E) , where D°G = 0 o)
- i=1 i

Any point h of 2 can be parametrized by the multiple
N
(uorazon; . af3)

where 7. €R * (1<i<3). So £2 depends on the twelve param-
eters (p* such that p p* = — m?, yleR, 1</, j<3). Let us
take the field of transformations

h—T; = ( X A4 (J;) Ap).
i=1 2 .
The representation of G, induced by the UIR of

R, XSU(Q): (%,4 )—expi(P-X)D/(4 ), where ¥,7R * and
AeSU(2), can be written
{ Ul tD’QOa(QOi)»(ZOi)»Ao}F }(E_;(Fi)l <i<3)

= exm’[e-tp + d(¢o — Q) + 8" 'by-ay,
+ Z r[4, q_Ok I

x D4 s leAA ., ,(E))F(A 0 1P_r07’i)l<i<3)

where

b, = A (;;‘

The space of the representation is .#'2(2 7 X R °,5%), where
3
dv=F +my'?d’p [[ 4V,
i=1
A basis of the differential (operating on the space of the € =-
vectors) of this representation U is given by:

T,=p. A,=b, C.=d,,

Ji i v

—
) F=DuA; A, )G~ A .

Q= —m rpk+1(a)
Byj

+im”(p* + m)'p* Ep ( 9 ) 1<k<3,
= (9yj

i 2]

=S+ i{BAV,+ G AV,

Q

= — (' + m'BAS +i{p'V; + C},

=)
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where C is the 3-vector of components,

. ad ;
C/=(' + m)*rs“( O+ P~
{

8 [p (ai,) r (ai‘)”

when 1<j, r, s<3, and j,r,s are all different.
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A uniqueness result in the Segal-Weinless approach to linear Bose fields

Bernard S. Kay?

Institut Fiir Theoretische Physik, Universitdt Bern, Sidlerstrasse 5, 3012 Berne, Switzerland

(Received 19 December 1978)

We prove a theorem, which, while it fits naturally into the Segal-Weinless approach to
quantization seems to have been overlooked in the literature: Let (D,07) be a symplectic space,
and .7 (t) a one parameter group of symplectics on (D,0o’). Let (H, 2Im¢-|->) be a complex
Hilbert space considered as a real symplectic space, and U(t) a one-parameter unitary group on H
with strictly positive energy. Suppose there is a linear symplectic map K from D to H with dense
range, intertwining .7 (¢) and U(t). Then K is unique up to unitary equivalence.

1. INTRODUCTION

In the Segal-Weinless approach to linear Bose fields,!
one is concerned with giving a mathematically rigorous ac-
count of the so-called “second-quantization’ process for lin-
ear field theories.

To model the classical dynamics of a (possibly infinite
dimensional) linear system, we adopt Weinless’ definition:

Definition 12: A boson single particle space (D,0,7 (t))
consists of a real symplectic space (D,0) together with a one-
parameter symplectic group .7 (¢), i.e.,

AT @)D,T ()W) =0o(®,¥) ¥ D¥eD.

Important examples of boson single particle spaces are ones
of the form (#°, 2Im{:|-», U(t )), where & is some complex
Hilbert space, considered as a real vector space, {:|-> is the
usual Hilbert space inner product, and U(¢ ) a unitary group
on # with strictly positive energy:

Definition 2%: A unitary group is said to have strictly
positive energy if

(a) U(r) is weakly continuous, thus U(t) =e ,and

(b) The self-adjoint generator H is positive with dense
range. These examples may be thought of as “first-quan-
tized” systems. For such “first-quantized” systems, there
exists a straightforward quantization procedure’® often
known as “second quantization.” Suffice it to say here that
this straightforward quantization is characterized by the
“generating functional” or “vacuum state”

(2 Wx)2D>=exp( — ||x)|2/2), xe7,

where W (x)is the Weyl operator, {2 the vacuum. (A precise
definition of quantization is given for example by Weinless
who defines a “positive-energy Bose—Einstein field”-see §4
of Ref. 2.)

To quantize an arbitrary boson single particle space,
one then adopts the following strategy: First, one seeks a
“single particle structure”:

Definition 3: A single particle structure (K,2%°,U(z )) for
a single particle space (D,0,.7 (¢ )) consists of a complex Hil-
bert space &, a unitary group with strictly positive energy
U(r) and a real linear map K from D to 57 satisfying:

(1) ranK is dense in 7~

(2) 2Im(KP |K¥ > = o(D,¥) (i.e., K is symplectic),

— iHt

“'Work supported by the Schweizerische Nationalfonds.
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QKT ()YP)=U)X (@) [ie,K intertwines.
J(t) and U(t)].

Roughly speaking then, one seeks to simultaneously
“Hilbertize” D and “unitarize” 7 (¢ ), enabling us to quan-
tize by the method of second quantization. More precisely,
we can then take the quantization for our single particle
space determined by the generating functional:

2 |W(@M2>=exp(— |K(P)||*/2), PeD.

The question arises as to the existence and uniqueness
of single particle structures. The existence question recently
acquired renewed interest in the currently popular subject of
“quantum field theory in curved space~times.” And, in a
recent paper,* we proved an existence theorem for a special
class of single particle spaces arising when one quantizes the
covariant Klein—-Gordon system on a stationary space-time.

The purpose of this paper is to show that, when a single
particle structure exists, it is unique. An analogous result for
Fermi-Dirac fields has already been given in the Weinless
paper,’ but the boson case seems to have been overlooked
there (though the result is implicitly assumed).

For the perhaps more important question of quantiza-
tion itself, the reader is referred again to Segal' and Weinless?
(see also Ref. 5) where results are given on the uniqueness
(and lack of uniqueness!) of quantization.

Il. A UNIQUENESS THEOREM

Theorem: Suppose there exists a single particle struc-
ture (K, %, U(t)) for a single particle space (D,0,.7 (¢)); then
it is unique up to unitary equivalence.

Proof: Suppose there are two such single particle struc-
tures (K, ,57,,U, (¢)), (K,,5,,U,(t)): Then
T. =K, oK ; ' is a real, linear invertible, symplectic from
the real linear dense domain K, (D) in H; to the real linear
dense domain K, (D) in H,. Also (3) of definition 3 implies
K, (D) is invariant for U, (1), and K, (D) is invariant for
U, ().

We shall show that T extends to a unitary. We have (a)
TU,(t)=U,(t)TonK,(D),(®) T * D —iT ~'iondo-
main iK,(D) where T * denotes the real adjoint of 7, H ,
considered as real Hilbert spaces (i.e., with inner product
Red:+|->). [(b) easily follows since 7" symplectic.]
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We now show that 7 has a closed complex linear exten-
sion: Consider

Loy 1 KU T * ydge, — CULOTx| D 5)

VxeK, (D); yeD (T ).
By a well known argument (see e.g., Ref. 2) the strictly posi-
tive energy of U, (¢), U, (¢) guarantees that /, , extends to a
function which is bounded and holomorphic in the lower
half ¢ plane, vanishes as Imf— — « and is continuous and
bounded on the real axis. We also have Ref, , (¢) vanishes on
the real axis by definition of the real adjoint. The Schwartz
reflection principle then implies that £, ,(¢) is bounded and
holomorphic in the plane (and vanishes at «). So by Liou-
ville’s theorem it vanishes everywhere. We then have, setting
t=0,

XIT * ydor, =<TX|pDs,
whereupon
(Txliyy = KTx| yy = ix|T + *p> = CxliT *p,

showingiyeD (T *)and T + () =iT *y. Therefore, T *
is complex linear, whereupon T= T *+ * is complex linear.

VxeK,(D); ye D(T ™),
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Taking the closure of both sides of (b), we recover
T*D —iT—1i= T-_])

since, for the comglex linear 7, the real adjc_)_int T+ and
complex adjoint T * coincide. Whereupon T is a closed
norm- preserving map with dense range, hence unitary. O
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On Blume’s integration of Schrédinger’s equation for a
quantum system subject to random pulses
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In this note we dispose of Blume’s objections to a recent article by Gzyl. We show that
he is forgetting about causality and that he makes obvious mistakes taking limits.

In Ref. 1, Blume claims that he shows why the compu-
tations in Ref. 2 are wrong. That is, he claims, first, that the
equation

[d¢t:H¢zdt+dV1¢z—’ (1)
where ¥, =¢(t)and ¢, _ =lim (s)anddV,=37_ ¥,
X &(t — T)) dt, which models a quantum system to random
pulses, is incorrect and, second, that it is incorrectly

integrated.
Blume claims that instead of (1) one should consider
idy, = Hy dt +dV,. @)

Here we show why one must consider (1) instead of (2)
and that even if (2) were the choice, Blume’s computations
are totally wrong. We do this by showing that (1) is causally
correct, and we explicitly carry out the limiting procedures
in Ref. 1 and show where he goes wrong.

Notice first that between pulses the system evolves ac-
cording to the unperturbed Hamiltonian H, and therefore in
order to integrate (1) [or (2)] it is enough to consider a quan-
tum system subject to just one pulse at a fixed time 7. Thus,
instead of (1) or (2) consider the equations

idy, = Hy,dt + V5(t — Ty, _ dt, 3

idy, = Hy,dt + V6(t — Ty, dt, 4)
which can be rewritten as

dp, + iHy,dt = — iVS(t — Ty, _ dt,

dy, + iHy, dt = — iV8(t — Ty, dt.

Now multiply both sides of each equation by ¢”* and
integrate from O to ¢ to obtain

HY(L) — Y(0) = — if'e‘”*ms ~Ty,_ds (5

0
ei]lll/)(t) _ ¢(O) - jfe,‘HsV(S(s —_ T)¢S ds, (6)
0

Now, if < T, both equations yield that ¢(r)
= e~ "H'y(0), since up to T there has been no pulse on the
system. Note also that (T — ) = lim,, ;%(s)
= e~ "“"y)(0). Consider now the case t = T, then Egs. (5)
and (6) yield
W) — YT —)= —iVi(T —), )
WT) — T —) — iV(T), ®
respectively. Comparing (7) and (8), we see that in (7) the

size of the discontinuity produced by the pulse at 7' depends
on (T — ), the state of the system “right before T,” whereas
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in (8) the size of the discontinuity depends on ¥(7), the state
of the system “right after 7.”

Therefore, if we want our model to be causal, we are led
to choose (1) instead of (2} for describing the time evolution
of the system.

But suppose we did not care about causality, or that we
are forced to consider (2) [or (6)] instead to (1) [or (5)]. As
noted above, from (6) we obtain (8) from which we obtain
W)= +iV) " 'WT =)= +iV) ‘e " "7Y0),and
from this it follows that for £> 7 the state of the system is
givenby, ¥(t) =e ~HCD (1 +iV) ~'e ~ HTyY0).

Had we used (5) insteads of (6), a similar computation
would have lead us to

W)= e MO DL = iV e HTYO). ©)

Besides the fact (missed by Blume) that (6) can be triv-
ially integrated, it is easy to see from either (7) or (8) that
probability is not conserved at the time of the pulses. Again,
this is due to the fact that the system is under a time depen-
dent perturbation, and therefore not isolated, or it is a defect
of the model. We emphasize that the nonconservation of
probability has nothing to do either with randomness or with
the singular nature of the perturbation.

Let us examine now the procedure which Blume calls
“the correct handling of the singularity” (which could have
been avoidg\d as we did show above). Rewrite (6) as
dg, = — iV (1)5(t — T)$,dt, where ¢, = ¢y,

V(t)=e "y~ which corresponds to (4) in Ref. 1.
Suppose, furthermore, to go along with Ref. 1, that Vand H
commute; then (2) becomes dp = — iV8(t — T)¢, dt. In-
stead of integrating this equation, Blume prefers to do things
the hard way and considers

dé.= —iVf(t)d[(t)dr (10)
where €f (1) =1, .27 (1), the indicator function of
the interval (T — €/2, T + €/2). We put the € as subscript in
¢ (1) to indicate its dependence on €. Then Blume says (and
this happens to be right!) that ¢ (1) = exp[ — iV i, f (s) ds]
#(0). Now, notice that
Pu(t)

[ if t<T—¢€/2,
—{exp[ —iV(t — T+ e/2)/€], if T—e€/2<u<T +€/2,
exp( — iV, if T+e/2<«t,

from which anybody can see that ¢ (T') = exp( — iV /2)¢,
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and that if we let e—0, we obtain

Yo t<T,
limg (1) = 1exp(— iV /Dy, t=T,
. exp(— iV  T<t,

which by no means tends to e'y(t ), with y(¢ ) as above, as it
should.

This is another instance of a singular perturbation prob-
lem: the solution of (2), considered as a limit of (10) as e—~0

1715 J. Math. Phys., Vol. 20, No. 8, August 1979

in some appropriate sense, is different from the limit of the
solutions of (10).

Note: The technique for integrating equations like (1) is
nothing new. For details and references see Ref. 3.

'M. Blume, J. Math. Phys. 19, 2004 (1978).
’H. Gzyl, J. Math. Phys. 18, 1327 (1977).
’D. Snyder, Random Point Processes (Wiley, New York, 1975).
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Settling the question of the high-energy behavior of phase shifts produced by
repulsive, strongly singular, inverse-power potentials

Nanny Fréman and Karl-Erik Thylwe

Institute of Theoretical Physics, University of Uppsala, Uppsala, Sweden

(Received 20 November 1978)

For repulsive, strongly singular, inverse-power potentials it is rigorously shown that the JWKB
expression for the nonrelativistic phase shift tends to exactness in the high-energy limit. The
hitherto open question as to the correct expression for the leading term in the high-energy
expansion of the phase shift for these potentials is thus definitely settled, and it is further
confirmed that even the next term in the expansion yielded by the WK B expression is significant.

1. INTRODUCTION

The high-energy limit of the nonrelativistic scattering
phase-shift produced by strongly singular potentials has
been studied analytically by several authors. For a general
review, the reader is referred to the extensive article by
Frank ef al. ' While there is agreement as to the form of the
energy dependence of the leading term, the expressions for
the coefficient of this term, obtained by different methods,
do not agree, though they give similar numerical values (see
Table I in Ref. 1). Thus, for pure inverse-power potentials,
i.e., for ¥ (r), in units of #2/(2m), given by

Vin=gr" (1.1)

where g 2 is a coupling constant, various authors >~ agree
that

n>2,

5/(k)k~ — 4,0 X (1.2)

where
Y= k (g2/k 2)l/n :gZ/nk (n — 2)/n—'>00, when k—*OO, (13)

but for the constant 4,,, the following differing expressions

are given:
1 e
= —,—2———”“——, Calogero ?, (1.4
sin{mr/n)" (3 — 2/n)
o = T M, Bertocchi etal.,®
‘ 2 I'3/2-1/n)
Paliov and Rosendorff, © (1.5)
A, = L=HC Jabbur.’ (1.6)

1—1/n "

Calogero obtained his result by a variable-phase calculation,
Bertocchi et al. as well as Paliov and Rosendorff used the
JWKB method, and Jabbur worked with Volterra integral
equations, matching solutions valid for small and large »,
respectively, at the classical turning point. In a recent work,
suggested by Calogero, Dolinszky ® has numerically investi-
gated the scattering problem for a potential proportional to
1/r*. His results support, for that particular potential, the
asymptotic exactness of the result obtained by means of the
JWKB approximation, i.e., (1.5). However, a decisive and
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general proof, valid for all n > 2, is lacking hitherto.

In the present paper we shall show rigorously that in the
high-energy limit the JWKB approximation yields the phase
shift, produced by the class of potentials (1.1), with an error
proportional to y ~ ', which, in turn, implies that the JWKB
expression for the phase-shift yields correctly not only the
term proportional to y but also the constant term in the high-
energy expansion of §,(k ).

Our proof of the above-mentioned result is based on the
theory for mastering connection problems developed in Ref.
9. We quote in Sec. 2 below an exact formula for the phase
shift derived in Ref. 9 and confirm that the conditions for the
validity of this formula are fulfilled also for the case of
strongly singular potentials. This exact formula gives the
phase shift as the JWKB expression plus a correction term
for which an upper bound is obtainable. In Sec. 3 we show
that, for strongly singular potentials of the form (1.1), the
correction term tends to zero at least as fast as y ! when
the energy tends to infinity.

2. EXACT FORMULA FOR THE PHASE-SHIFT

We write the radial Schrédinger equation as

‘f;‘ +Q¥Pu =0, @.1)
where
QXN=k>*—V@H I+ 1)/7* (2.2)

with obvious notations. The wavenumber &k and the orbital
angular momentum quantum number / are real (k > 0, />0),
whereas r is allowed to assume complex values.

For strongly singular potentials it is not necessary to
replace/ (/ + 1)by (! + 1) *inthe WKB functions, thelatter
being good at the origin whether we modify in this way or not
(see p. 114in Ref. 9, where a criterion is given; cf. also p. 40 in
Ref. 1). It is, however, convenient to use this modification,
since the JWKB formula for the phase shift is then exact in
the limit g > = 0. Thus, we choose

(D =k =V () — I+ P/r. @3)
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FIG. 1. (a) Qualitative behavior of the effective potential V' (r)

+ (I + 4)?r ~ % (b) Path of integration A for the zz integral (3.2). The heavy
line from #, towards r = + « indicates a cut. The phase of @, 4 () on the
upper edge of the cut is indicated. The small circles show the approximate
location of further zeros of Q 2, ,(r), beside r,, for the case n = 6.

The exact phase-shift formula (11.40b) in Ref. 9, on
which our proof will be based, was derived for the case that
the physical potential is at the most as singular as » ~ ? at the
origin. The formula is, however, valid also for strongly sin-
gular potentials, since the two decisive conditions are ful-
filled, namely that the quantity exp[ f*|Qoq()dr|] increases
monotonically and tends to infinity as »— + O along the real
axis and that, furthermore, the integral f ’|€Q,,.qdr|, where

QZ_’anod 1
€= 2 + 6
Qmod 16Qmod
d 2 2 d2 2
X[S( mod) —4Q,2nod mod ,
dr ar

is convergent when r— + 0 along the real axis, as is seen
when one notices that, for n > 2, the integrand, |€Q,,,.4 |, be-
haves as /2 ~ ? in the immediate neighborhood of the ori-
gin. Thus, in accordance with (11.40b) in Ref. 9, we have the

exact formula
O;(k)=[6,(k)])ywkp — arg[F1,(+ 0, + «)], (2.5)

where — arg[F,, (+ 0, + oo)] is the correction term which
we shall examine in the next section, and

R
(G = fim ([ Quugdr

(2.4)

R
— J [kz—(l+%)2/r2]l/2dr),
I+ 1/2)/k
2.6)

r, being the generalized classical turning point, i.e., the zero
of Q2 4(r) on the real axis (see Fig. 1).
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3.ESTIMATEOF ARG F,,(+ 0, + )

According to the estimate given on p. 128 in Ref. 9, we
have

larg[Fy, (+ 0, + «)]|<pt + higher powers of u, (3.1)
where

H= J 'EQmoddr|’
A

the integration being performed along a path A from -+ Oto
+ o0, on which there is only one extremum of
|exp(i f "Omoqd?)]- See Sec. 6.3 and Fig. 6.1 in Ref. 9.

In order to estimate the i integral (3.2), we shall start by
considering the explicit expression for €. With ¥ () given by
(1.1) and Q*(r) and Q 2, _4(7) defined by (2.2) and (2.3), re-
spectively, we readily obtain from (2.4)

(3.2)

1 1 Dgr  6(/ + 1)
€0moa = T 3 { nn+ g ( t 2) )
4’2Qm0d 4Q mod \ rn +2 r
(e e MY
16Q rSnod '.2n +2 P 4 r()
This relation can be written
3 i1 gZJ,.(n — i —j— 1/2)—1
Qunoa= 2 2C . (3.32)

S50 QR
or, alternatively,

2j,— 2i —(n —2)j

EQ 3 i1 C gor
mod 1;1 j;o i [02..(N]) 172°
where the quantities C;;, as is easily realized, are indepen-
dent of g, k, and r, but may possibly depend on n and /.

In order to be able to choose the path of integration A
conveniently, we must know the location of the transition
points, i.e., the roots of the equation

moa(r) =0. (3.4)
With the aid of (2.3), (1.1), and (1.3), we can write (3.4) as

()T Sy T

Recalling that y— oo in the high-energy limit [see (1.3)], we
realize that the roots ,, of Eq. (3.5) are

(3.3b)

(3.5)

Py = (gZ/kZ)l/neiZﬂ'm/n[l_+_0(X-2)]’

0

m=0,.,n—1 3.6)

The distance between any two neighboring roots »,, and 7,,,.,
is given by

[P — Pl = 2(&2/k D) "sin(z/m)[1 + O (x ~ )].
Kk—» o0
(3.7
The generalized classical turning point #, is obtained by put-
ting m = 0 in (3.6).

The path A shall circumvent the turning point 7y, at
which the integral of |€Q,,,,4 | diverges. In Fig. 1bsuch a path
A is depicted, chosen so as to proceed along the real axis and
to circumvent 7, in a semicircle enclosing no other zeros of

2 4(n). Since r,— 0 when k— o, we choose conveniently
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the radius of the semicircle as a definite fraction 7 (indepen-
dent of k) of the distance 7, . Furthermore, by choosing 7
small enough, we achieve the result that Q 2, _,(r) is approxi-
mately a linear function of  — r, on the semicircle (see the
Appendix), and we thereby assure the fulfillment of the
above-mentioned condition that there shall be only one ex-
tremum (with our choice of phase of @, () a minimum) of
lexp(if "Q,,0qd7)| on the path A.

To obtain an upper bound for the i integral (3.2), we
write

=g+ s+ P, (3.8)
where 14, and u, are the integrals along the two parts of A
coinciding with the real axis and y, is the integral along the
semicircle joining them (see Fig. 1b). We shall now examine
these integrals separately.

Let us first estimate u, . To this purpose we consider the
integral over the absolute value of an arbitrary term in the
right-hand member of (3.3a) fromr= +Qtor=r_,
where, with due regard to (3.6), we have

ro=0=mr = ({1- nE/kH" 14+ 0(x~H1.G9)

The region from the origin to the classical turning point is

classically forbidden, and hence Q2 ,(r)<0for 0<r<r,. Ac-
cording to (2.3) and (1.1), we therefore have

P"Q2 s =g — k2" 4 (1 + §*" 2, 0<r<r,
(3.10)

Putting » = » _ in (3.10) and using (3.9), we obtain in the
high-energy limit the refation

[P Q faoalr ) k: gl -1 —nl, @G.11)

which will be used presently. Examining, furthermore, the
behavior of the function |7*Q 2, 4(r)| in the interval ( + 0,

r _ ), we find from (3.10) that, for sufficiently large values of
k, it takes its smallest value for r = r _ . Utilizing this fact
and taking (3.11) and (3.6) into account, we obtain the fol-
lowing upper bound for the integral over the absolute value
of an arbitrary term in the right-hand member of (3.3a) (sup-
pressing the factor C; which is immaterial here):

4 ngr(nAZ)(i~j— 1/2) — 1
J 2 i—1/2 dr
0 'ranod(r)‘
g2j fr r(n—2)(i~;‘—~1/2)—ldr

< 17 Q2 ea(r '™ Mo
gzj ro,-(n —Ni~j— v -1y4
) lr"_Qimo_)z"—‘“L r
_ g
QL
X[ — 2 —j— )]~ -2 1D
~ {1 —(1—17)"]“"*'1/2

k— o0

XYl(n =2 —j— 3]~y ~ 2D
— 0(1,1 —2(i-,)).

(3.12)
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Since i — j>1in (3.3a), we realize that the slowest approach
to zero of the integral (3.12), when k— o, is exhibited when
i — j takes its smallest value, unity. We thus conclude that
4y, =0 ~ ", when k— .

An upper bound for u, is obtained analogously as for
4, by utilizing the fact that, in the interval (r _ , + «) with

ro ={+nr, (3.13)

the function Q Z,_4(r) is a monotonically increasing function
of r. Thus, in view of the fact that /> 1 and with the aid of the
expressions (3.6) and (3.13) for r, and r ,_, respectively, we
get

1 < 1
1Qhea' ™2 @ ear I

~ [1 —-(1 +77)—n]—i+1/2k —2i+1
k— a0

(3.14)

Estimating the integral over the absolute value of an arbi-
trary term in the right-hand member of (3.3b) fromr =r
tor = + oo, we thus obtain (suppressing C;;)

® glp= = =2y
r |Q12nod(’)|i~l/2

J o0
g2 f P2 (=g,

S
| QP )™
g fwr—zf‘—(n-z)jdr

< -
1Q hoa(r I ™12
~ = +mn =+
k— o0
X2+ —2)j— 1] yt-2-2

= 0@ ~ %~ (3.15)
This upper bound displays the same high-energy behavior as
the upper bound obtained in (3.12). Hence, also
iy =0(y ~ ") when k— .

Finally an upper bound for the integral over the abso-
lute value of an arbitrary term in (3.3b) along the semicircle
joining the points 7 _ and r , is obtained, simply by multi-
plying the maximum value of the integrand by the length of
the path. According to our previous assumption the radius

of the semicircle is 77,, and on the semicircle we therefore
have

r—rol=nrs. (3.16)
If we choose the parameter 7 sufficiently small and, as al-
ready assumed, independent of k, we may, in the high-ener-
gy limit, use the expression (AS) in the Appendix for the
function Q2,_4(7) on the semicircle. Noting, furthermore,
that |7|>7 _ on the semicircle, we obtain the following up-
per bound for the absolute value of an arbitrary term in
(3.3b) (with C;; suppressed):

ngr—Zi-(n——Z)j

—— <
|Q3n°d(r)ll— 172 j o

S (S

X[1+0@M+0(y=»). (@17
On multiplying the right-hand member of (3.17) by the
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length of the path, 7 % 7,, and substituting the expressions
(3.6) and (3.9) for r, and r., respectively, we find that the
upper bound for the integral in question equals
O(y '~ %~ 7), when k—>co. This implies that p2,
= O (y ~ ") in the high-energy limit.
Thus we conclude that

p=p =00y 7.
Hence, it follows from (3.1) that the correction term
argl#,, ( + 0, + )] occurring in the exact formula (2.5)
tends to zero at least as fast as y ~ ' when k— 0. Thus it is
rigorously shown that the JWKB expression (2.6) for the
phase shift tends to exactness as k— oo . From (2.6) it then
follows that, in the high-energy limit, we have, for fixed /, the
expansion

3.18)

6,(k)k= — A ox+(Q+H724+0(x ™Y, (3.19)

where 4, , and y are given by (1.5) and (1.3), respectively.
The question of which one (if any) of the expressions
(1.4~1.6) for 4, , is correct is thus definitely settled, the ex-
pression (1.5) being the correct one. Also the next term in the
high-energy expansion obtained from (2.6), i.e., the constant
(1 + Hym/2in (3.19), is significant according to our analysis.
We remark that our treatment can easily be generalized
to apply to a class of inverse-power potentials with an energy
dependent coupling constant. In fact, if we replace g 2in (1.1)
by g° = g'*k °, where — (n — 2) <a<2 < n, the expansion
(3.19), with y replaced by y ' = k (g'2/k %~ %)"/", still applies
also for the class of energy dependent potentials in question.

APPENDIX: LINEAR APPROXIMATION OF THE
FUNCTION &%,,4(7/ CLOSE TO THE TURNING POINT ry

Consider the function Q Z,_, (#) in the region of the com-

plex r plane defined by |r — r, |<7r,, O <7 < 1. In this re-
gion Q7 ., (») is an analytical function of » and can thus be
expanded in a Taylor expansion about the point 7, . Since
Q L4 (ro) = 0, the Taylor series is

0 1 v
2 2 v
r)y = —_—] — j—
@ = 3 2 (E08.0)  ¢-r)
oC r v
=k? Zav(——l), (Al
v=1 ro
where
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a,= =i 20%0))

- 'V!k2 0 dr" r=r,
_ v_,n—1+v_g_2_
=(=D ( v >k2rg
=D+ D I+4)?
><¢z(1+ R TR ” ) (A2)

Inserting the expression (3.6) for r, into (A2) and using the
definition (1.3), we get

n—1+v
avz(—l)v”( . )[1+0(X’2)],

when ko0, (A3)
where O (y ~?) is uniformly bounded with respect to v.
Comparing the absolute values of two consecutive terms in
the right-hand member of (A1), we obtain, with the aid of
(A3) and the fact that | r — ry |<7r, in the region under
consideration,

a, ((r/ro— ¥}
ar/ro— 1)
_on+vlr—r
ko v+ 1 K

<-;-('1 +n+0(y~ 3, v>1. (A4)

Thus, if we choose 7<€2/(n + 1), the terms in the expansion
(A1) will in the high-energy limit decrease rapidly with in-
creasing values of v. Retaining explicitly only the term

which is linear in » — r,,, we realize from (A1) and (A3) that

[1+0(x 9]

Qhoa) = nk*(r/ro— D140 +0(x )],
n<2/(n+ 1), (AS)

in the region |r — ry | <77, .
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Classical, cross-section generating solutions of field equations
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The symmetry properties of classical, cross-section generating solutions of field equations,
sectons, are investigated. It is shown that under general conditions on the interaction Lagrangian
of the field theory the symmetry group of the solutions can only be 0(1,1)x0(2) for finite
momenta. Such solutions generate inclusive cross sections with Feynman scaling.

I. INTRODUCTION

A functional integral representation of the generating
functional of cross sections for an arbitrary field theory was
found in a previous work.! This representation was used to
show that under some circumstances, inclusive (and semi-
inclusive) cross sections are dominated by certain classical
solutions of the field equations, called sectons.'*

The simplest example for the use of the theory of sec-
tons is the calculation of the single particle inclusive cross
section that has the following exact form

do/d’p = o(2m) ~*Q2E) = '(i(p(— P))»
where j( p) and j( p) are the Fourier transforms of
(@O + m >(x) and (O + m )P(x), respectively; p, = E
= (p*> + m?)'”? and the expectation value of an operator,
(0[#,1]) is defined through the functional integral

(O[4,91),
=07 'm*[(p,p,) —m*] " '%64 J. dzdv dv'

(L.1)

Xexp{i(v — v)(p,— Pp) + iz(pa+ Pb)}
X f Dy DJO [,7)]

X Ko + 2/2)K¥ — v + 2/2)K(v' — 2/2)
XK —v' —z/2)e 418, (1.2)

where K = [0 4+ m %, m is the physical mass, while p,and p,
are the momenta of initial state particles. Finally, the action
A is defined by

Alg) = — [ d*sdHKUDD*, (x — KT)
+i[a%IL@W-L@) (1.3)
where L (¢) is the Lagrangian of the field theory in question
(we shall restrict ourselves to the discussion of the field the-
ory of a single scalar, Hermitian field). The Green’s function
D%, ()= > [ d*pQE) ! expl —ipxle(p)  (14)

can be substituted by D°,_ (x) in the limit g—1. D*_(x) is

“Permanent address: Department of physics, University of Cincinnati,
Cincinnati, Ohio 45221, U.S.A.
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defined by (1.4), except the integral over the momentum is
cut off at | p| = (s — 4m?)"?, where s = (p, + p,)* The
substitution of D , (x) =D, (x) by D*,_(x) is relevant only
if we investigate the behavior of inclusive cross sections in
the fragmentation region; for finite momenta the use of

D _ (x)is sufficient. Notice that the inclusive cross section is
just the functional derivative of the generating functional
olg] = a1}, with respect to g( p).

The formalism described above can be put to use in
various ways. Classical solutions of the field equations may
dominate the expression of inclusive cross section (1.1). The
classical solutions should satisfy the following set of integral
equations [at g( p) = g = constant]"?

o) = f d*yDp(x — )V ($0))

+tgjd“y1>+(x N )
(1.5)
P0x) = f d*yD 3G — )V ()

_ ,-gjwym(x — )V @),

where V ((x)) = L, )/ (x), L,,, istheinteraction part
of the Lagrangian and D.(x) is the casual Green’s function
of the massive Klein—~Gordon equation, satisfying KD (x)
= — &*x). Itis obvious that the function #(x) and #(x) that
satisfy Eq. (1.5) also satisfy the field equations

Kp(x)= —V(x)), Kp(x)= —V(¥x). (1.6
Note that no renormalization counterterms should be in-
cluded in V (¥(x)) in Eq. (1.5), because the semiclassical re-
sults are of lowest order in #, while counterterms are not.

The contributions to inclusive cross sections discussed
above are obviously nonperturbative. Contributions of per-
turbative origin can also be investigated in large orders () of
the perturbation expansion with respect to the interacting
part of action 4 of Eq. (1.3).** The leading contribution to
the inclusive cross section is generated by instantonlike solu-
tions of Eq. (1.5) with a changed coupling constant. Only the
norm of these solutions depends on » in leading order of
n ~ !, consequently the n dependence of the Green’s func-
tions can be factored out and an estimate of the contribution
of large order of perturbation theory to inclusive cross sec-
tions is obtained up to an unknown constant.*
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The only specific case in which solutions of Eq. (1.5)
have been studied in some detail up to now is the ¢ * field
theory,’ in which the existence of O (1,1) X O (2) invariant so-
lutions (depending on p?> = p2 — p* and p? = p} + p? only)
has been inferred from the investigation of Eq. (1.5) in mo-
mentum representation at large p, p, p,/p fixed. The exis-
tence of solutions of other symmetry groups could not be
excluded, however, A solution that is 0 (1,1) X O (2) invar-
iant leads to an inclusive cross section with Feynman scaling
if we take into account the natural breaking of the symmetry
for momenta of O (s /%), due to momentum conservation.

In the present paper we wish to prove that only
0(1,1) ® 0(2) [or O (1,1)] invariant solutions of system (1.5)
may exist. The breaking of the compact subgroup, O (2), has
no consequences on the symmetry properties of the inclusive
cross section if no polarization is measured.

The proof is based on the detailed study of Eq. (1.5) in
various regions of spacetime and various assumptions con-
cerning the symmetry properties of the solution. We shall
talk of O (3,1) (¢, depends on x 2 only), O (2,1) (dependence
onx2andx,),0(1,1) @ O (2) (x*and x? = x} + x2), 0 (3) (x*
and x,) and E (2) (x> and x , = x,, + x;) invariant solutions
(¢ can always depend on sign (x,) as well). The breaking of
the compact part of the symmetry group does not influence
the question of existence of solutions.

We shall define regions 7 + and T~ by x*> 0, x,> 0
and x, <0, respectively. Region S is defined by x* < 0. Let us
also define the Minkowski vectors x; = (x,X,,X,) for O (2,1)
and x| = (xg,x3) for O (1,1) ® O (2). Then xeS *if xeS, xpx)

>0 and sign (xg) = + 1, x&S°%if xS and x;x, <0. Finally
we define § * for E (2) by xS and sign (x | )= + 1.

We shall consider theories of a single Hermitian scalar
field only. We shall assume that the interaction Lagrangian
satisfies a few simple constraints. Defining
V(¥) =dL,, (#)/dy, V is assumed to have the behavior of
V() =0 @~ Y)for y— oo, where N<4 (renormalizability
constraint) and ¥ (¥) = O (¢ " ~ ') for y—0, where n>3 [the
mass term is completely extracted from L, (¥)]. The last
constraint could be relaxed to n > 2 + € spending consider-
ably more effort. Finally, we shall assume that W (¢,,¢,)

= [V ) — V(¥,)1/(; — ¥,) satisfies the conditions
Wt = 0@y~ + ¢~ Hfor ¢, Y0 and
W (¢, ¢,) = O (W~ + ¢7 ~ ?) for ¢,,,—0. These and the
previous constraints are satisfied by all of the models usually
considered in the literature.

In the final part of the present section we shall cast Eq.
(1.5) into a slightly more convenient form, as follows (we set
& = 1 for the sake of simplicity):

Yx) = f d*y Dy(x — D)V (93

+ ffd‘ym(x —DIV@ED) — V@ON],
(1.7)
H)= [ % Do =V G

+ iJ' d*yD*% (x — DIV (H() — V()]
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We shall also make extensive use of the following equa-
tion [not independent of (1.7)]

Yx) — ) = f dD,o(x — DLV W) — VF N,
(1.8)

where D_(x) is defined as
D,(x) = Dp(x) + iD* (x) = O (xo)D (x),
1.9
D@ = - m~'[8() - mO @V (mV )2V 7],
Finally,

Dadv(x) = Dret( - x)'

The advantage of Eq. (1.7)—(1.8) in contrast to Eq. (1.5)
is that their structure is made explicit, namely, it is obvious
that they become Volterra integral equations in certain re-
gions of spacetime and certain symmetries. More exactly
D, (x —y)and D_(x — y) are Volterra kernels and the
terms with D _ (x — y) can be regarded as inhomogeneities.
Another important and related property of Eq. (1.8) is that if
xeT ~, the yeT ~ as well. Furthermore, if xS then yeT
or S. Equation (1.7) has a similar property with 7 * and
T ~ exchanged, provided ¥(x)=y(x).

The proof of nonexistence of solutions is based on the
simple observations made above. Every time #(x) or
¥(x) — ¥(x) satisfies a homogeneous Volterra equation we
can show after a study of the asymptotic behavior of the
kernel that the equation has no nontrivial solutions. This
circumstance is the consequence of the uniqueness of solu-
tions of Volterra integral equations.® It is always sufficient to
show that the solution is zero in a finite region around x = 0
or 1/x = 0, since a solution of (1.6) may have singular points
atx = Oand o only and it is identically zero if it vanishes on
a finite subinterval of (0, « ).

One can put these considerations in a slightly different
light by realizing that the admissible solutions of Eq. (1.6)
are asymptotically dominated by the solutions of the free
Klein-Gordon equation. A homogeneous Volterra equa-
tion, however relates the behavior of ¥ on the left-hand side
to the behavior of ¥ () on the right-hand side. Since
V() ~0 (" ) for y—0, the two sides do not match and
the equation has no nontrivial solutions.

The organization of this paper is as follows. In Sec. II
and III we prove the nonexistence of solutions for O (3,1)
symmetry and other symmetries [except of O (1,1) X O (2)],
respectively. In the conclusions (Sec. IV) we summarize our
results, pointout why O (1,1) ® O (2) invariant solutions may
exist and compare sectons with other known classical solu-
tions, solitons and instantons. In the Appendix we investi-
gate the asymptotic behavior of solutions of Eq. (1.6) near
the singular points.

Il. O(3,1) SYMMETRIC SOLUTIONS

First we consider Eq. (1.7) for O (3,1) invariant func-
tions. The integrals over the angular variables can be per-
formed exactly and one obtains the following equations for
¥ (x), ¥°(x) and ¢ ~ (x) [the function ¢(x) in T *, S and
T ~, respectively]:
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¥+ ) =a, HO(mx)/x — (m/2x) Jw dyy?

X [Ji(mx)Y (my) — J (my)Y,(mx)]V (¥ + (»))
2.1)

P
— aoK (mx)/x — [I,(mx)/x] f " K (my)V ()

K\ (mx)/x] j AL (mp)V (P°(), 2.2)

Y (x)=a_H{P(mx)/x +b_J(mx)/x +c_ Y (mx)/x
+ (7/2x) J; dyy*[J,(mx)Y (my)

~Ji{(my)Y (mx) 1V (¢~ () (2.3)

a,
- f dyy?{ i/ H Pmp) [V @+ (9) — V(0 )]

+ (- i7r/4)H§f’(my)[V(1/7‘(y)) =V )
+ K (m)lV (8°(») — V (#°(»)]},

ay=(~2i/ma, + f A )V (B (),

e_=—a_,

(2.4)

b =(r/2) f " YV (0 ()
—2 f " By my)V (),

¢ =@/ j " Ay (myp)V (6 ().

The equations for ¥(x) are obtained from Eqs. (2.1)-
(2.4) by complex conjugation and the substitution
(W) *—P(x), [#(x)]*—(x). We use the standard nota-
tions, J,(x), Y, (x), H {"?(x), K (x) and I,(x) for Bessel
functions.

First we prove that a, = 0. Suppose a,70, then ¢°(x)
~x ~ 2 for x—0. Indeed, none of the first two terms on the
right hand side of Eq. (2.2) can compensate the term
a,K,(mx)/x; the second term is obviously smaller for x—0,
while the first term would have the same behavior only if
V (¢°(x)) ~x ~ * for x—0. Such a behavior of ¥ (#°(x))
would make the second term divergent, so we proved that if
a,#0 then ¢¥°(x) ~x ~ 2 for x—0. On the other hand if ¥/°(x)
~x " %thenb _ of Eq. (2.4) would diverge. Consequently
a, =0.

The possible asymptotic behaviors of ¥(x) at x = 0 are
analyzed in the Appendix [Eqs. (A2) and (A4)]. They are
W(x)~x "2, x YN =2 and x°, where N is defined as
V (@) ~gy¢" ~ ! for — oo . The requirement of convergence of
b _ excludes the behavior x = %™~ 2 a5 well. If ¥/0) and
1#(0) are constants then a;and b, can be calculated, by making
use of the field equations and integrating by parts in Eq.
(2.4). We obtain

a, =[O +9 (O —2¢°0) — ¢+ (©0) — ¥ (0)
+ 2¢°(0)1/m,
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ay= — Q2i/mya, = Qi/ma _,
.5)
b_ = —2¢*+(0)/m + 4y°(0)/m,

c_=0.

The vanishing of the coefficient a | = ima,/2 implies
that ¢ * (x) = 0. The reason for the vanishing of ¥ * (x) is
that Eq. (2.1) becomes a homogeneous Volterra integral
equation in variable x ~ !. Suppose n3>3, where
V() ~hy" ~ ! for y—0. then we obtain the following esti-
mate for y (x) = x**¥(x) {y(x) is bounded, see Eqgs. [(A2)
and (A3)]}:

x| <(hrM " ~*/m) fw dyy 3= y(x)|, 2.6)

where M is an upper bound for | y (x)|. Equation (4.6) was
obtained by making use of the bounds |/, (z)| <z~ '/,

| Yy(2)| <z~ /2, satisfied if z > z,. The iteration of Eq. (2.6)
shows that the only function satisfying this equation is
Y(x)=0.

The continuity of ¥(x) as a function of x? at x> = 0 re-
quires, however, that ¢ * (0) = ¥ ~ (0) = ¥°(0) (see Appen-
dix). The asymptotic behavior ¢°( y)—0 and ¥ ~ ( »)—0 for
y—{Qis not admissible for an O (3,1) invariant solution of Eq.
(1.6), i.e., ¥ ~ (x)=¢°(x)=0. In other words, no nontrivial
global solution of Eqs. (2.1)—(2.4) exists.

. 0(2,1), £(2) and O(3) INVARIANT SOLUTIONS

We shall follow a route, somewhat different from the
one we have taken for the investigation of O (3,1) invariant
solutions to prove the nonexistence of solutions for O (2,1),
E (2)and O (3). Weshall frequently rely on the Volterra char-
acter of the equations.

First we shall consider Eq. (1.8) for xeT ~; having
found that it is a Volterra equation for #(x) — ¥(x) we shall
proceed to prove that ¥(x) = ¢(x) if xeT ~. Then we move
to region .S ~ and prove that ¥(x) = #(x) in this region as
well. The investigation of § ~ is followed by that of S * and
T * proving in each region that ¢(x) = ¢(x). Using this re-
sult we move to Eq. (1.7) and investigate the same regions in
reverse order. Each time we find the equation to be a Vol-
terra equation for y(x), and consequently we can prove that
¥(x) = 0. A slight complication arises in the O (2,1) case,
because the integral equation is not a Volterra equation if
xS °, but luckily the other regions decouple from S, i.e., if
x€S £ or T * then y£S°.

1t is convenient to introduce the variables x , and x _
(similarlyy . andy _)asfollows:x , = x,+ x;for E(2), x,

+ |x| for O (3) and x; + |x| for O(2,1), while x _
=x-x/x . for E(2), x, — |x| for O(3) and |x| — x; for

O (2,1). x is a three dimensional Euclidean vector for O (3)
and Minkowski vector for O (2,1). Further on we introduce
the notation

k(x+,x,;y+,y_)=@(x+ —y+)@(x- —y—)

XJolm[(x, —y Hx_ —y_ ).
3.1

Using these notations the kernel of the equations,
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§d *yD,.(x — y) can be written as (after integrating over
dummy variables)

Jd4yDret(x_y)~ fdy+ dy-K(x+,x_;y+9y~)9

3.2
where
K, x_p, .y )~ /x dex,x_y, y_)
(3.3)
for E(2)

Kx,x_y,»_)
~[0, =y Ve, —x)]O@, —y_)
X[kGxox_w,oy )=k, x_p_y.)],0G4
for O (3),

Kix,x_y,»y_)

=y +y Ve, +x )kx, x_y . »y_)
3.5
for O (2,1).

Expressions for the kernel fd *yD,,.(x — y) are ob-
tained by the substitution x , <y, , X _<p _.

The similarity of the equations for the symmetry groups
in consideration allows us to concentrate on one of these
symmetries only. The proof of nonexistence of solutions can
be readily extended to the other symmetry groups as well.

Let us take as the illustration of our method the case of
E (2) invariance. First we shall prove that ¥(x)=#(x). Equa-
tion (1.8) for xeT ~ reads as (we substitute x,—~ — x,, y,

— =)

A¢(x+,x_)=f dy+f dy_(y,./x,)

XJom[(y . —x Ny —x )"
XWEPANy Ly ),

where 4y = ¢ — Yand W, 0) = [V () — V(D)) [¢ — ¢].
We know that ¢, ¥ and A4 have the following asymp-
totic behavior for x , , x _ — [Eq. (A7)]

Ay~ C,(r) sinmx/x>"? + C,(r) cosmx/x*"?, 3.7

where r = x _ /x _ and C{r) are polynomially bounded.
Any function Ay that satisfies (1.6) and decreases faster than
the expression given in (3.7) must be identically zero.

Since W (#,9) = (0" % + 9" %) = O (¥ + P)atypical
term on the right hand side of Eq. (3.6) gives the following
contribution at large valuesof x |, =x_ =x[wesety

=x(1+7%),y_ =x(1+72)]
A¢(x,x)~x‘1f dn+7]+j dp_n_(1+9%)
(1] (¢]

X(1+92) " 2P (mx[(1 + 72)1 + 7217
X C(A+7° )/ +72)), (3.8)

where Pis a periodic function (maybe a constant) of its argu-
ment and C (2) is such a function that the integrals over 77
and 7 _ are finite.

Only small values of 7 , and 77 _ contribute to the inte-
gral on the right hand side of Eq. (3.8) if Pis definitely not a
constant. We obtain [say P (z) = sinz]

(3.6)
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A1,/f(x,x)~x"f0 an.,.m. fo dn_n_Jo(mxn  q_)
X sin(mx + mxy?®, /2 + mxn_ /2)C (1)

=x*’£ dn.m, fo dn_m_Jomn,n_)

X sin(mx + mn?_/2 + mn*_/2)C(1)
= a sin(mx)/x* + b cos(mx)/x?,

contradicting our previous remark concerning the behavior
of Ay for large x.

If Pis a constant then we use the standard trick of
writing

Joemp L) = f dp sin(zy , coshg),
0

then we extend the integralover 7 . 10 — 0 <7, < o and
deform the contour of integration to pick up the singularity
of the integration over 7, atn , = — 1.

One obtains the following expression for the right hand
side of Eq. (3.8)

A:p()c,x)~x_1J‘l dppJ; dn_mn_
X f(p,1 + 1* )Ko(mx7 _ p)
~x=*[Tdpp [ dmnspKgm e, G9)
1 0

where we substituted p = i, . If the singularity of
CA+7 A+ NA+79%) aty, = —iis
such that the integral on the right hand side of Eq. (3.9) does
not converge at p = 1, then the choice of the contour of the
integral over variable 7 , is slightly different: It does not go
through the point 7 . = — I, but still at every point Im
> €> 0. The behavior of ¢/(x , ,x _) at large x would still be
¥(x)~x ~ 3. Consequently, #(x) = {(x) if xeT —.

Using the result ¥(x) = ¢(x) for xeT ~ we can write
down integral equation (1.8) for xe§ ~, and we get auto-

matically yeS ~ . Introducing variable x = (x _ x _)"?,

s=x,/x_,(y,.y_)*=ux,y, /y_ =psweobtain

© © 1 o
A¢(x,s)~x2[f duuzf dp+ J; duu? J;/ dp]
1 u u

Jomlu(p +p~ ") —1—u1"?)
X WA (xu,s p). (3.10)

Since s appears only in the argument of functions ¢ and
¥ on the right hand side of Eq. (3.10) we immediately realize
that a consistent solution of this equation is possible only if
¥~ ~const for s— oo, while ¢ — ¢ = Ayy~S ~ <, where
the value of & should be calculated from the substitution of
the trial function, 4y = 5(x)s ~* into Eq. (3.10). On the oth-
er hand, if ¥(x,s)—(x) (independent of s) for large s, then
the integral equation reduces to the O (3,1) invariant equa-
tion, and we know that no O (3,1) invariant solutions exist
bezcause the condition of continuity can not be satisfied at
x“=0.

The proof of nonexistence of solutions in § * is identi-
cal with the proof for xe§ ~— provided x * and y * are ex-
changed withx “and y .
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Finally, if Ay = O for xeT —, S'then Eq. (1.8) reads for
xeT * as follows:

A'l’(x-p’xf):v[) 4 dy+ J(;x dy—(y+/x+)
XkW (AW y .y ).

Itis possible to set k = 1 for small enoughx | andx _ . The
asymptotic behavior of ¢ for small x | andx _ iseitherx 7'
x™ orx™ or(x,x_) ™=V in either case the x , and
x _ dependences factorize for sufficiently small x _ [See
Egs. (A4) and (A8)]. A similar statement is valid for Ay as
well. Consequently, we have the equation

Aw(x,)=Cf0X dy_ WWHAWy )

that implies A¥(x _ }—0 for x _ —0. On the other hand
Ay(x) satisfies a differential equation Ay = CWAy the solu-
tion of which is finite and nonzero at x _ if W (¥,1) is bound-
ed and infinite if W (1,%) is unbounded, implying that Egs.
(3.12) and (3.11) have only trivial solutions.

Having proven #(x) = 1(x) one may turn to Eq. (1.7)
and consider regions T *,S *,8 ~,and T —, each after the
other. Thus, one obtains equations analogous to (3.6), (3.10),
and (3.11) except of the substitutions A¢—, W (¢, )4y
—V (). The absence of nontrivial solutions can be shown by
methods quite analogous to the ones used to analyze the
solutions of the original equations.

The methods we applied to prove the nonexistence of
solutions of Eq. (1.8)and (1.7)inregionsS *,§ ~,7 *,and
T ~ would not apply to region S° for O (2,1) invariant solu-
tions. Let us take, however, xS * and yeS°, then we obtain
(we choose x, = x|, |x|=x))

fDre&(x -y 4y~ J;w dy“(y“/xn)dy3 J;” duD (u)
3.13)

where u = — 2x; ysinha + x{ — yj — (x; — y;)’ and D (2)
was defined by Eq. (1.9). It is easy to show that

Lw duD (1) = 0,

consequently the regions S * (similarly 7 ") and S © decou-
ple. Thus, we can prove that O (2,1) invariant solution ¥(x)
has to disappear for xeT *, T =, S *, S ~. The Fourier
transform of a function ¥(x) that differs from zero only if
x€S° cannot, however, have a pole at p* = m* unless it in-
creases exponentially for x— oo Such a behavior is clearly
not admissible by the integral equation for xeS°. In other
words, Eq. (1.5) has no O (2,1) invariant secton solutions,
solutions that contribute to inclusive cross sections. One can
also remark that a solution differing from zero only if xeS°
does not satisfy the condition of continuity at xj=xg — x?

— x5 = 0, as discussed in the Appendix and as suchitisnota
global solution.

Finally, we shall discuss solutions having singularities
at locations other than A = 0. Such solutions, (or rather A¢)
also disappear at large x %, for xeT' ~ . A solution of (1.6),
which is zero for x > ¢, =0 cannot be different from zero for
x < ¢, however, since its behavior at x S ¢ could only be

(3.11)

(3.12)
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Y ~c — x or ¢~ constant and such a behavior does not pro-
vide a global solution of Eq. (1.6) (see the last part of the
Appendix). Consequently, the solution is zero everywhere.
The proof outlined above loses its validity if the singularity,
at a point other than x = 0, is a consequence of a translation
X,~X, + c,, but this case trivially reduces to the problem in
which there are singularities at x = 0 only, after the inverse
translation.

IV. CONCLUSIONS

The nonexistence of solutions of integral equation (1.5)
was proven in the previous two sections except for possible
solutions of 0 (1,1) X O (2) [or O (1,1)] symmetry. The proof
was based on the recognition of the simple fact that the inte-
gral equation reduces to a Volterra equation in all regions
and symmetry groups, except of region S or S ° for O (3,1) or
0(2,1)and O (1,1) X O (2) symmetries. The part of the proof
concerning regions S * and S ~ relies on the fact that no
O (3,1) invariant solutions exist.

0 (2,1) invariant solutions were eliminated by noticing
the decoupling of region S ° from other regions in the kernel
of the integral equation.

Finally, we proved that O (3,1) invariant solutions do
not exist for two reasons:

(1) The coefficients of the inhomogeneous terms in Eq.
(2.1)-(2.3) ay, a . and a _ have to disappear, otherwise
¥°(x) is too singular for the convergence of some integrals
(this circumstance excludes the solution, singular at x = 0,
Px)~x 2

(i) The continuity of the solution at x * = 0 eliminates
the regular solution [¢/(x) ~ const for x—0] as well.

We shall point out below that our arguments used to
eliminate solutions of other symmetries are not applicable to
the case of O (1,1) ® O (2) symmetry.

One can follow the methods applied in Sec. 111 to prove
the relation ¥(x) = ¥(x) if xeT ~, S ~ for 0(1,1)® 0(2)
symmetry as well. On the other hand, the kernel of the equa-
tion is not Volterra if x, ye§ 0 since we have

f d*yD o (x — )

= JdYﬁJdeK(x,,y X5Yp YD~ deﬁde%J; da

X ddD (— xj — y| + 2x y, cosha

— 7

—x}—yi 4+ 2x,y cos?) 4.1

and no matter how we choose x|, x,, y, and y, we can find &
and & such that argument of D (z) [see Eq. (1.9)],z > Oand we
have a nonzero contribution. Unfortunately, we could not
express kernel K in terms of known special functions (except
for the case m = 0, when K can be expressed by elliptic
functions).

The argument used to eliminate O (2,1) invariant solu-
tions does not apply here, since the kernel of the equation for
xeS *, yeS° has the form

f d*yD,.(x — )
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~ [ @ [ @ik e 2

~ J dy; J ay’ J da ddD (x; — y;

— 2x yysinha — y} — x] + 2x, p, cosd?),  (4.2)

and the integrals over a and ¢ give a nonzero result.

Further on we can show that the arguments used to
eliminate O (3,1) invariant solutions cannot be used to prove
the nonexistence of O (1,1) @ O (2) invariant solutions.

(i): The inhomogeneity, analogous to the term
ayK (mx)/x in Eq. (2.2) is much less singular; it behaves like
logx for x,, x;—0. Consequently, even if the inhomogeneity
is nonzero, ¥(x) is not too singular to make all of the appear-
ing integrals convergent;

(i) An O (1,1) ® O (2) invariant solution of Eq. (1.6) can
have a finite jump at xﬁ =0,s04¢¥ =0forxeT —,S ~ and
Ay=#£0, Ayy—const for xj—0, x5 is an admissible global
solution of Eq. (1.6). This phenomenon is restricted to solu-
tions with a symmetry group, the noncompact part of which
is O (1,1) (see Appendix).

The question of existence of O (1,1) ® O (2) invariant so-
lutions of Eq. (1.5) will be investigated in future
publications.

Finally, we shall make some remarks concerning the
relation of secton solutions on one hand and soliton or in-
stanton solutions on the other. The most crucial difference
between secton and soliton solutions lies in the fact that only
secton solutions possess mass shell singularities (except pos-
sibly of the mass = 0 case). The Fourier transform of a soli-
ton solution contains a factor 8( p,), so that p5 = p? + m?
cannot be satisfied. Instanton solutions satisfy Eq. (1.5) in
region S (or S °) provided ¥(x) = ¥(x), but they do not pro-
vide a global solution of the integral equation. As we learned,
they cannot even be extended to global solutions except may-
be in the case 0 (1,1) ® O (2). The reason of the difference of
secton and instanton solutions is that the latter satisfy an
integral equation obtained from (1.5) if the terms with
D (x — y) functions are omitted.

Thus, one obtains an integral equation the kernel of
which if an analyric function of x, and one can continue to
Euclidean metric. The D | functions are not analytic, how-
ever, and when solving Eq. (1.5) one has to stay in Min-
kowski space, find and match solutions for time and space-
like coordinates as well.

ACKNOWLEDGMENTS

The author has benefitted from stimulating discussions
with Dr. I1.G. Halliday and Dr. J.J. Scanio, and is grateful to
Professor T.W.B. Kibble for the hospitality at the Blackett
Laboratory, where a major part of this work was completed.

The author also wishes to thank the Science Research
Council (G.B.) and the U.S. Department of Energy under
contract number EY-76-S-02-2978 for partial support.

APPENDIX

In this Appendix we shall investigate the asymptotic
behavior of solutions of Eq. (1.6) near the singular points.
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A. 0(3,1) invariant solutions

Equation (1.6) reads for O (3,1) invariant solutions as
follows (x? = x{ — x? — x3 — x3, x2>0)

[d?/dx* + (3/x)d /dx + m*](x) = — V (¥(x)).(A])

The possible asymptotic behavior of the solutions of Eq.
(A1) for x— « depend on the behavior of ¥ () for y—0. We
shall assume that ¥V (¢) ~gy" ~ ' for y—0, where n>2 + ¢,
€ > 0. Then the general solution of Eq. (A1) is dominated by
the general solution of the corresponding linear equation for
XxX— o0, namely

Wx)~c, Y (mx)/x + cJ(mx)/x.
The special solution ¢(x)—C for x— o0, where m?C

+ V' (c) = 0 does not satisfy Eq. (2.1) and leads to infinite
action. ¥(x), as given by Eq. (A2) satisfies the constraint

[x32(x)| <N if x>€>0. (A3)
The behavior of #(x) near x = 0 is either dominated by
the solution of the linear part of Eq. (A1), in which case
¥(x)~d,x ~* + d, for x—0, or one may have a special solu-
tion that satisfies the nonlinear equation only
Hx)~x =YV =D,

The (x) ~x ~ ? behavior is possible only if N < 3.

Finally, we shall examine the behavior of ¥(x) near x>
=A =0, provided ¢ is bounded. We can introduce variable
A instead of x in Eq. (A1) to obtain

(4Ad?/dA* 4+ 8d /dA + mHYAh) = — V(¥(A)). (AS)

(A ) has to be continuous at 4 = 0. Suppose ¥(A ) contains a
term proportional to 8 (4 ) (4 ), then one obtains the follow-
ing term on the left hand side of Eq. (A5)

48 A)f(A) + 85(A) f(A) = 46(2) f(0),

and consequently we do not have a global solution of Eq.
(A5).

(A2)

(A4)

B. £(2) invariant solutions

Let usintroduce the variables x |, = xy + x3,x _ = x%/
x, and ¥ =x_/x , =x*/x*_. Equation (1.6) has the fol-
lowing form for an E (2) invariant solution in terms of the
variables introduced above:

{8/9x* + (3/x)0/x — [PF/Ir + 3rd/r] /x> + m?)

X¢(x’r) = - V(¢(x’r)) (A6)
It is obvious that at fixed x, r—>o0, N> 2, (x,/)—0 or
¥(x,r)—y(x), independent of r, otherwise the right-hand
side of Eq. (A6) could not be compensated by the left-hand
side. On the other-hand solution of the linear part of the
equation has to dominate the asymptotic behavior of the
solution for x— o, just like in the O (3,1) invariant case. The
general solution of the linear part of the equation is

P ~Y,(mx)x~er—' I er Y
+Jmx)x = dr = T dyr )
~Cy(Px ~*? sin(mx) + Cy(rx ~ *? cos(mx),

with ¢ arbitrary.
The behavior of #(x,7) for x -0 is either controlled by

(A7)
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the solution of the linear part of Eq. (1.6) in which case [see
Eq. (AT)]
W(x,N)~c (xr)' + cy(xr) ~ (x/r)
=cx, +ex i x (A8)
(the condition of dominance of the linear part sets some obvi-
ous constraints on Ret), or it is controlled by the interplay of
the nonlinear and linear parts, in which case the solution

becomes O (3,1) invariant for x—0 and its behavior is given
by Eq. (A4).

C. Other symmetries

Equation (1.6) takes the following form for an
O (k,1) ® O (3 — k) invariant solution (k = 0,1,2)

{3%/9x] + (k /x)3/0x — &*/3x} — [(2 — k )/x,18/3x,

+ m* Y lxpx) = — V((xx ), (A9)
where x| is the norm of the O (k,1) vector, and x, is that of the
O (3 — k) vector.

We shall not discuss the asymptotic behavior of
¥(x,x,) at the singular points in details, the discussion and
results are substantially similar to those in the E (2) invariant
case.

The only question we wish to examine is the behavior of
the solutions near A=xj = 0. Equation (A9) in terms of var-
iables A and x, reads as follows:

(46%/0A % + (2K + 20/3A — /%% — [(2 — k)/x,10/3%,

+m?Ydx) = — V(YPdx). (A10)
Suppose that ¥(4,x, ) has a finite jump at A = 0, i.e., ¥(4,x))
contains a term 6 (4 ) f (4,x,), with f(4,x ) finite and nonze-

roatA = 0. We obtain the following contribution on the left-
hand side of Eq. (A10)
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[446%/3A % 4+ 2k + 2)3/9A 10 (A) fF(A,x)
~4A8' (A ) f(A,x)) + BASA) £ (A.x) + (2k + 2)8(4)
X f(d,x,)
~Qk — 2)6(A1) f(0,x)). (A1)

It is obvious that the finite jump is admissible only for
k = 1, or with other words for an O (1,1) ® O (2) invariant
solution.

D. Singularities at points x %<0

The field equation for E (2) invariant solutions can be
written as follows:

[4A%/9A% + 89/A + 4x . F*/3x , IA 1¥(x . A)
= —V(dx, 1)), (A12)

where A = x%, x | = x, + x3. Suppose ¢ = Ofor A > c. Then
the behavior of ¥(4,x | ) near A = c is governed by the term
(413%/32 *)y of the equation, unless ¢ = ¢'x  , in which case
the term (4x , 8°/dx _ A ) is equally important. Disre-
garding the last case, in which a linear transformation trans-
lates the singularity to A = 0, with an unchanged field equa-
tion, the behavior of ¥(4,x ) near A = ¢ could only be
¥~0(c — x)ory~0(c — x)c — x), generating terms of the
type 8'(c — x) and & (¢ — x), respectively, on the left hand
side of Eq. (A12).
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Scattering of a beam of particles by a potential
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We discuss the potential scattering into a cone C in position space of a beam of particles with
localized momenta distributed over a set K, and the derivation from time-dependent scattering

theory of the forrzlula
Sxkdk §cdQ o (Q)

[where o, (£2) is the scattering cross section] as a measure of the probability of this scattering. We
make use in our discussion of a result of Dollard giving the probability of scattering into a cone for

a single wavepacket.

1. INTRODUCTION

In the time-independent approach to scattering theory
one begins with the time-independent Schrédinger equation

(4 + kHUX) = V (D), (1.1)

where V (X) is, say, a potential which tends to 0 as |%|— o,
and one looks for solutions having the asymptotic form

(1.2)

eikr

Y (D)~ + fr(12) o
as r = |X|— . The solution ¢;(X) is supposed to be related
to a scattering process in which an incoming plane wave,
e'** interacts with the potential, resulting in another plane
wave with the same momentum (corresponding to part of
the original plane wave which is not scattered) and an outgo-
ing cloud of scattered particles [represented by the second
term in (1.2)]. The quantity f;;(£2) is called the scattering
amplitude, and the quantity,

05 (2)d2 = |f(2)|d02, (1.3)

is the (differential) scattering cross section and is supposed
to describe the number of particles scattered per unit time
into the solid angle df2, divided by the flux of the incident
particles. Various interesting quantities are then expressible
in terms of the cross section o ({2 ). For example the authors
of Ref. 1, using both rigorous mathematical arguments of
time-dependent scattering theory and some plausibility ar-
guments, arrive at essentially the following result. Suppose
we consider a “beam of particles” with momentum uniform-
ly distributed in some subset K of momentum space which is
scattered by the (radially symmetric) potential V. Then the
probability of scattering into a cone C in position space is
proportional to

L dk fc dNo (2), (1.4)

at least if one ‘“ignores the forward scattering.” A similar
result appears in Refs. 2 and 3.

Of course one would like to rigorously derive such re-
sults using the apparatus of time-dependent scattering the-
ory; in carrying out such a program one would deal with
normalizable wavefunctions and study their time evolution
as they interact with the potential. This is not to say that
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plane waves or solutions of the Schrodinger equation of the
form (1.2) should not be utilized; these are useful mathemat-
ical objects which appear in the discussion of the questions
we have mentioned above, and it is only their interpretation
as “particles” or “‘beams of particles” that should be
eliminated.

In the present article we will derive a result related to
(1.4), from the time-dependent theory. Our starting point
will be the following result of Dollard*: given an initial state
u of a particle, the probability P (u,c) that at large positive
times the particle will be found in the cone C (i.e., the prob-
ability that the particle scatters into C) is given by

P(u,c)=JCdk”' Su(k ) (1.5)

(where appropriate assumptions on the p9£entia1 V are made
to insure that the S operator exists, and Su is the Fourier
transform of Su). One might then try to recover the formula
(1.4) by taking for « in (1.5),

u(x) = constJ e*dk, (1.6)
K
and expressing S in terms of the scattering amplitude f; ({2 ).
However, this does not lead to (1.4); the problem is that
although (1.6) does represent a particle with momentum
uniformly distributed over K, it is not the only such wave-
function with such an interpretation. One could just as well
take

u(xX) = const J- e* % ) gk, (1.7
K

and to obtain anything like (1.4) it seems necessary to take

the win (1.5) to have the form (1.7) and then average over the

phase ¢(k ) in some way. Since the possible phase functions

form an infinite dimensional space, the nature of such an

averaging process is somewhat problematical. The usual so-

lution to this problem (e.g., Rev. 5, has been to consider only
those ¢(k ) of the form

p(k)=Ek, £k =0,
where £ is a vector in R’ and k, is some fixed vector in K.
Then the average over phases amounts to a two-dimensional

integration over the plane perpendicular to k,. As might be
expected, this leads to an answer which depends in general
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on k,. The dependence on k, disappears if we let K shrink
down to the point k,, but then the original idea of a beam of
particles with momentum distributed over K also disap-
pears. The main problem here seems to be that wavefunc-
tions such as (1.7) represent a single particle, not a beam of
particles. We will overcome this difficulty by actually con-
sidering a many-particle wavefunction in our calculation.
We will also take into account the possibility of forward scat-
tering and will derive a result which reduces to (1.4) in the
region where forward scattering does not occur (i.e., when K
and C are disjoint).

2. SOME TECHNICAL PRELIMINARIES

In this section we will discuss several results concerning
the existence of the scattering operator and solutions of the
Schrédinger equation of type (1.2), and the relationship be-
tween these objects, which holds for certain classes of poten-
tials ¥ (%) defined on three-dimensional space R*. For the
sake of simplicity we will not describe the most general po-
tentials for which these results are known; we refer to Ref. 6
for further results.

In order to use the result of Dollard mentioned in the
Introduction we shall need existence of the scattering opera-
tor. It is known’ that for ¥ (X)eL ¥ R*)nL '(R*) the Moller
wave operators,

N+ = slim e"ffe .1
-+ o
exists on L *(R*). Here
2 2 2
Ho=—A=—(a -‘9—,+‘9—), 22
Ix;  Ix;  Ox}
H=H,+V.
Furthermore, the .S operator,
S=02H*2, 2.3)
is unitary.

We next discuss solutions of the integral equation,

e

|

o ik X — p .
be(h) = & —‘de VoW k=R,
s X — |

(2.4)

which is formally equivalent to (1.1) together with the re-
quirement that the solution behave asymptotically like a
plane wave plus an outgoing spherical wave. Ikebe*® has
proved that if V' (X) is real, locally Holder continuous except
at a finite number of singularities,

VeL *(R* and ¥V (%) = O (|%| ~*~€) €>0as |¥| >0,

(2.5)

then for k=~0, (2.4) has a solution ¥, (%) which is bounded
and uniformly continuous in X and & for & ranging over any
compact set excluding O. Furthermore, ¢ (%) has the as-
ymptotic form

elk | %]

Ye@) = 5 —

fd e vak@wo(l |)
(2.6)

1
47
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k' =k (x/|%|),
which is of the form (1.2) if we put

fi@)= — ﬁ fdﬁ ¢~ KV W ().

In (2.7) £2 denotes the polar angles of k' with k taken as the
polar axis (*z axis”’). We will also need to know the relation
between the S operator and f;: (12 ) of (2.7). Ikebe® proves that
for uel *(R’) we have

Q.7

A - N 1( .~ -
Su(k) = a(k") + —Jdk Gk ) (@)5(k? — k), (2.8)
ki

where * denotes the Fourier transform and & is the one-
dimensional delta distribution.

Remark: Our notation differs slightly from that of
Ikebe, e.g., in the choice of constants in the definition of
fi:(12). Also, Ikebe’s form of (2.8) does not contain the
8(k * — k '*) which may be removed by an integration.

We now use (2.8) to express the probability P (u,c) in
(1.5) in terms of the scattering amplitude f;(£2) for a par-
ticular u of the form

u(x) = Q) | K| jdlg e, 2.9)
K

where KeR® is a bounded measurable set of volume |K | con-

taining no pair of perpendicular vectors. (The latter condi-

tion is one that might reasonably be expected for the set X of

momenta of a “beam” of particles.) For each £eR*and u as in

(2.9) we put

us(%) = u(x + £). (2.10)
We have for fixed §~ ,
- - e s — 172
Sug (k) = K|~ (e 4 1EL_Z
xf dk e*f(2)8(k* — k'), .11
K
and so,
PuzC)
= Jdlg'|Su§-(k |2
C
_KCl 2 gy dk~'-[ dk %~ K¢
IK | |K |7 KnC
X[ (@)8(k* — k') + Jdk ” dkdl
K X<
X e = DEF(@)fi( )8k — k)87 — k7).
2.12)
We now suppose that
KnC=4. (2.13)

Let k€K be a fixed vector, and let dé: denote Lebesgue
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measure on the plane defined by £k, = 0. We will calculate
$ £ dEP (uzC); in doing so we will proceed rather formally
in manipulations with various 3 distributions; these manipu-
lations are easily justified using standard results on Fourier
transforms (see, e.g., the proof of Theorem 1 in Ref. 9). We
have

f d e* =D = Quys(k, — 1), 2.14)

£k, =0

where 8 is the two-dimensional 6 distribution and k1, de-
note the components of k and / perpendicular to k,. Hence

J_ dEP(u:C)

k, =0

szT dk JLXdedlfk(.())fI({))éz(k —1)

X 8(k?— k'S — k™). (2.15)
We have
8k, —1)8(k*—k')6(1* ~ k")
=8k, —1)8(k*—1D)8(*— k")
=8k, —1)8(k? —1H8(*— k")
1 - - ,2
1 .-
=—8k—DSU*— k"), 2.16
Y ( Yo ( ) (2.16)

I
where k| and /; denote the magnitudes of the components
k|| and lH of k and [ parallel to k,. We have also used the
identity

1
5<kﬁ—fﬁ>=ﬂ[5(k”~q,)+(k,,+z,,)], .17

ane the fact that K contains no pair of perpendicular vectors

to set 62(131; ll)(i(kH + /) = 0. (This term can only be
nonzero if k = /1k,.) Hence,

f_ _ dEP(ugC)
&k, =0 °
8k — N6 — k™)

=l_17| dk ”KX dkdi f () f(2) iy

> 6(k2_ ’)2
ky
L Sk—k')
2kk,

:deE’LdE[ﬁ(ﬂ)j
=_122_J-dl€’f di |fe(@)]

]Klfdk Jd!)ak(.())

We remark that fzy _, dé P (u &C ) depends on k, because
of the term & /k in (2.18). We also note that the process of
integrating over ¢ affer computing P (uzC ) amounts to
considering the particle as being in a mixture of states with
different values of &. (Physically, £ corresponds to the im-
pact parameter of the particle. See Ref, 2 for a further
discussion.)

(2.18)
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3. SCATTERING OF A BEAM OF PARTICLES

In this section we assume that K, C, and V satisfy the
assumptions of the previous section which were necessary
for the validity of (2.18). We now construct a multiparticle
wavefunction corresponding to a system of particles each
having a fairly localized momentum and with the various
momenta “uniformly distributed” over K. Namely, cover R’
with a grid of cubes with sides parallel to the axes of length €,
letK,,....K y, be those intersections of K with cubes of the grid
for which |K; | = vol(K,) > 0 and then put

v
Py (X, Xy) = H ufxy), 3.1
i=1
where
u(®) = Qm)** |K,| - ‘”f dk &% . (3.2)
K,

We have N = O () and we shall eventually let -0 or
N—> . As in Sec. 2 we will need to consider position trans-
lates of the particles described by the u,(x,), and we put

Une=Un (% + Enin + £x), (3.3)

where £€R’. We assume that the particles in g, ; interact
only with the potential V (not with each other). In this case
the S operator for the system of particles is just the product
of the one particle S operators, and the probability P, (u,.,C )
that the ith particle is scattered into the cone C'is given by the
last term in (2.13) with K and £ replaced by K, and £ (We
are assuming KnC = @.) The average probability of scatter-
ing into the cone C is then given by

P(lﬁNgC)——— Z Pi(u;,C).

1*‘1

(34

Now we pick some fixed k€K, for each i = 1,...,V; by the
result of (2.18) we have

1 N f d - P
—_ ity u,» £ C
N igl ék,=0 € P, C)

=,:1-N_|11('_,-[f kllfdﬂok(ﬂ)

where in the integral over K, k; denotes the magnitude of
the component of k parallel to k,. We now consider the re-
sult of letting N— o0 in (3.5). Smce each K, is contained in a
cube of linear dimension the order of N *'* we have that the
factors k /&, are 1 + O (N ™), and so we may replace these
factors by 1 in taking the limit as N— . Finally, if the
boundary of K has (three-dimensional Lebesque) measure
zero, then it is not difficult to prove that as N— o0, the right-
hand side of (3.5) tends to

lTé-I L dlELd.(l o (02).

There is another line of reasoning leading to this result which
may be more satisfying than our introduction of the “aver-
age probability of scattering into C”’ [immediately preceed-
ing (3.4)]. Namely, given our expression for the probability
P(u,z,C) that the ith particle is scattered into C, we can use
this to compute the expected number of particles scattered

(3.5

(3.6)
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into C, divide by the number of particles, ¥, and let N—co.
This line of reasoning leads to an argument identical to the
one we have presented above beginning with (3.4). In fact the
expected number of particles scattered into C is given by
(3.4) times NV, as may be seen by arguing that this expected
number is given by

P1q>.q, + P4 gs.q, + -+ 2p\pogs..q,,
+ 2ppsq.q.. g, + -+ 3pwpigs.q, + -, 3.7

wherep, = P{u,,,C)andg,= 1 — p, and an elementary ar-
gument shows that the sum in (3.7) is p, + - + p, which is
(3.4) times N.

We discuss briefly the interpretation of (3.6). The quan-
tity P (& C ) is for fixed f a probability, but (3.5) is not, due
to the £, integrations. However, for large | £, | the probability
P(u;¢,C) is small, and so we may consider (3.6) as approxi-
mately proportional to the probability of scattering into C for
a “‘wide” beam of particles with localized momenta uniform-
ly distributed over K. The validity of (3.6) for any actual
scattering experiment is dependent upon whether or not our
averaging over phases (the integration over £,)is well corre-
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lated with the nature of the beam of particles produced in the
experiment.
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A definition of asymptotic flatness is given without the use of Einstein’s equations. For this we examine (a) the
possible conditions on .# * and their consequences and relationships, and (b) the coordinate transformations
which preserve certain forms of the unphysical metric § on a neighborhood of .# *. Roughly, a space-time
(A ,g) is called asymprotically Minkowskian at future null infinity if it is weakly asymptotically simple, #

is isometric to # 57 (the # * of the Minkowskian space-time) and (a) £2,,
CA,‘,,V =0and # * or, equivalently, (b) 2 ~ 2.0 A2#= —1,R= 0(_0 ),

L =02 "2, 0% = 1,
Ry +‘QRH;#]_0('04)

on.# * An equivalent definition is given based - on the existence of a coordinate system in which, on a
neighborhood of # *, g behaves as the conformal metric of Minkowski’s space—time and can be written in an

explicitly given form.

1. INTRODUCTION

It is generally assumed today that if general relativity or
any other metric theory of gravity is correct, the space-time
of a bounded source, e.g., of a binary neutron star, should
behave more and more like the Minkowskian space-time as
we go further away from the source. This intuitive require-
ment has been materialized into the concept of an *““asymp-
totically flat space—time.”

However, it seems that the concept of asymptotic flat-
ness has not been defined rigorously and unambiguously.
Since general relativity is the dominant candidate for the
position of the correct gravitational theory, most often as-
ymptotically flat space-time has been taken to mean asymp-
totically simple and empty space-time or, at least, a space-
time for which the Ricci tensor goes fast enough to zero near
# (the conformal boundary). This is justified by the direct
relationship provided by the Einstein equations between the
Ricci tensor and the energy—-momentum tenser whose ‘‘van-
ishing at large distances” captures somehow the concept of
an isolated physical system. It can be argued, however, that
asymptotic flatness should be defined as a property of the
space-time independently of any physical theory, e.g., with-
out any reference to the Einstein equations, as asymptotic
simplicity is defined. This attitude seems to be built into two
important works by Bondi, van der Burg, and Metzner' and
Penrose.*™ In the first paper Bondi and his collaborators
relate asymptotic flatness to the existence of a coordinate
system in which far from the source the components of the
metric tensor tend somehow to the components of a flat met-
ric. A similar approach has been adopted in more general
studies.”™ In the second paper’ Penrose defines asymptotic
simplicity in a purely geometrical way and then goes directly
to the concept of asymptotically simple and empty space—
time by assuming the Einstein field equations. As a result the
shear of the conformal boundary .# vanishes, the unphysical
Weyl tensor vanishes on .#, {2, = 0on . ({2 is an appro-
priate conformal factor) and other properties follow.?* How-
ever, as it is clearly stated by Penrose,? the concept of asymp-
totically flat space-time is not defined and it is not clear
which of the previous properties should be build into a defi-
nition of asymptotic flatness.
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The most important argument against a condition of
the form R,” = O (£2") is that it cannot be tailored to have
the right strength: Whatever n is, the condition is either too
weak or too strong. Since most of the properties of asymp-
totically flat space-time are consequences'” of 2, £ 0and
Ci,pv = 0 (the notation is explained at the end of this sec-
tion), we would like to have a condition R,” = O (£2 ") which
will imply these two relations without imposing additional
and unnecessary restrictions on the space-time. We will
show in Sec. 3 that this is not possible R =02 %) is not
strong enough to imply Cippv = 0, while R v=0(%im-
plies C; oy = Z 0 and some other unnecessary restrictions for
the space—time. A simple example which demonstrates the
inappropriateness of the condition R,” = O (2 ") is given by
the space-time with metric (in coordinates u, r, 8, ¢ )

=80=1,80=1+47r"7%8yn=sin"?0g;; = —r’and
the remaining components equal to zero. With N=r" this
space—tlme has (in coordinates u, 0 = r, 6, 4) 2.,

C, oy S0bUt R = — 40224+ 0(2°). Smcesuch aspace—
time should be certamly called asymptotically flat, we con-
clude that the condition R,," = O (2 ) should not be includ-
ed in a definition of asymptotic flatness. Consequently a
question arises: Are there any conditions containing the
Ricci tensor only (and perhaps £2 ) that are necessary and
sufficient in order to have £2,,, =0, 5,1“ ov £0? As it turns
out (Theorems 3 and 4) such conditions do exist!

Another question related to the definition of asympto-
tic flatness arises from two basic theorems referring to flat
(R;,.» = 0)and conformally flat (C;,,, = 0) space-time: A
space—time is flat or conformally flat if, and only if, there is a
coordinate system in whichg,, =diag (!, — 1, —1, — 1)
org,, ={7diag(l, — 1, —1, — 1), respectively. What-
ever the definition of asymptotic flatness is, it is natural, if
not necessary, to ask whether a similar theorem can be for-
mulated for an asymptotically flat space-time, that is wheth-
er there is a coordinate system in which a simple explicit
form of the metric can be given satisfying automatically
£2,,,2 0and/or C,,,, = 0. Again it turns out that such a
system exists (Theorems 1 and 2) for space—-tlmes which sat-
isfy the first or both of 2, ,, = 20,C, oy = £0.
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The purpose of this paper is to analyze the interrelations
of the geometrical properties attributed to asymptotically
flat space-times, answer the above questions, and give a rea-
sonable, geometrical and rigorous definition of asymptotic
flatness without any reference to the Einstein or other field
equations. This definition will be given in three equivalent
ways. The first two will be stated in terms of tensor condi-
tions which hold only on .# * . The third definition will be
stated in terms of the existence of a coordinate system in
which the metric can be written in an explicitly given form in
a neighborhood of .# * . The fact that asymptotic flatness
can be defined in these three equivalent ways should be re-
garded as an important asset of the definition for aesthetic as
well as practical reasons.

The method used in this paper to study asymptotically
flat space~times consists of establishing a suitable coordinate
system on .# " and expressing tensor relations in that par-
ticular coordinate system. This approach seems to uncover
some interdependencies between tensor relations which
have not been discovered by purely tensorial methods. How-
ever, it should be emphasized that all properties, theorems,
and conclusions are coordinate independent and quite prob-
ably most of them can be proved by purely tensorial methods
(although such proofs are not yet known). But there are also
properties, e.g., Theorem 1, which can be obtained only by
considering particular coordinate systems.

To avoid unnecessary restrictions on the space—time we
adopt at each step only what seem to be the minimum re-
quirements which enable us to perform the calculations.
Thus we assume successively (i) existence of # *, (ii) appro-
priate internal structure for ., (iii) appropriate “fasten-
ing” of & * to the rest of the space-time, and (iv) other
conditions on .# * . In Sec. 2 we present some preliminary
considerations regarding the Minkowski space~time, some
properties of # ", and the basic requirements for asymptot-
ic flatness. In Sec. 3 we examine the conditions which should
be probably included in a definition of asymptotic flatness.
In Sec. 4 we examine the transformations which are related
to the possible behavior of the conformal metric on a neigh-
borhood of # . In Sec. 5 we present some theorems and the
definition of asymptotically Minkowskian space-time. Fi-
nally in Sec. 6 we give some properties of asymptotically flat
space—times and make a few concluding remarks.

In what follows the term space-time means as usual® a
pair (.#, g) of a connected four-dimensional Hausdorff C =
manifold .# with a Lorentz metric g on it (i.e., a metric of
signature — 2). Since we restrict oursleves to signature — 2,
fat and Minkowskiar should be regarded as equivalent
terms. Other concepts will be defined when they arise. It
should be pointed out, however, that intuitive and precise
concepts will often appear mixed, since one of the objectives
of this paper is to present arguments supporting the reason-
ableness of the definition of asymptotic flatness.

In this paper Latin indices will stand for 0, 2, 3, whiie
Greek indices will stand for 0, 1, 2, 3. The components of the
physical metric will be denoted by g,,, , while the compo-
nents of the conformal or unphysical metric will be denoted
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by g,,,,. Components of tensor quantities calculated fromg,,,,
will be distinguished by a ~ sign. Covariant derivatives with
respect to g, are denoted by a semicolon. Commas denote
partial derivatives. A capital letter M as superscript or sub-
script marks quantities referring to the Minkowskian space-
time. Finally, tensor equations which hold only on # * will
be written with the special equality symbol = . Such rela-
tions hold in every coordinate system, but they cannot be
differentiated covariantly. At some points long but straight-
forward calculations are needed before a property can be
established. In order to avoid unnecessary sidetracking and
keep the emphasis on the important issues we have omitted
such calculations and give only the results in the Appendix.

2. BASIC PROPERTIES OF ./

To speak about infinity of space~time we have to postu-
late that the space-time has an infinity. Thus it is very rea-
sonable to assume that our space—time is somehow asymp-
totically simple. In this paper an orientable space-time
(A, g) will be called weakly asymptotically simple**! if there
exist (a) a strongly causal space (.# , §) with a smooth non-
empty boundary & (Cj ), (b) an open subset U of .# and
an open neighborhood Uof # (UC.&),and (c) a diffeomor-
phism £:U — U — .# such that there is a smooth (C° at least)
function {2 on U with 2 = 0 and 2,#0on.s and
g, =127, on U— . This deﬁnltlon of asymptotic sim-
plicity is weaker than Penrose’s original definition? since we
have omitted'” the condition that every geodesic in A has
two endpoints on .# . Thus we avoid any conditions on the
interior of the space-time and define directly weak asymp-
totic simplicity.'* Also we are not interested in including all
infinity in .#. Finally, we asked that £2 be C 3, since later we
will consider derivatives of (2.

With this definition the first and most plausible condi-
tion to be impesed on the space-time is the following:

Condition A: The space—time is weakly asymptotically
simple.

The most important requirement for our space—time' is
to “behave” as the flat space—time does near .# . To exploit
this qualitative statement we consider briefly the Minkows-
kian space-time. In null-spherical coordinates (u, r, 8, ¢ ) we
have dS? = du? + 2dudr — ¥(d6? + sin’8d¢ *) (u is the re-
tarded time). Changing to coordinates (4, o, 8, ¢ ) with
w=r'wefind dS? = du’ — 2wdudw — v *(d6*

+ sin’0d¢ ?). Assuming a conformal factor £2 = « we have
the metric of the conformal (unphysical) space-time

w? —1 0 0
_ —1 0 0 0
- . 1
by 0 0 —1 0 0
0 0 0 — sin%@

The future null infinity .# ;5 of the Minkowskian
space-time is defined"' by the equationsw = 0,7 = + «. It
is a well-known three-dimensional null hypersurface with
topology R ' X S *and induced metric [in coordinates x ‘
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=(u,04)]
0 0 0
=0 -1 0o | @)
0 O — sin?6

From Egq. (1) it can be found that the only nonzero
components of the Riemann tensor and Ricci tensor for the
metric bﬂ‘, are

RM, =sin—20R", =1, 3)
R¥= _0* RM=1, R¥=sin"20RY=—1,
)]

while the Weyl tensor is obviously zero. Furthermore, we
find easily that

N 0%=—-1 Q Tl p= -2 (5)

To make our general space-time behave a little more
like the Minkowskian space-time we ask that the two space-
times have identical conformal boundaries at least partially.
Thus we impose the second condition:

Condition B: There isa subset # + of # which is isomet-
ricto S .

Thus .# * inherits all the intrinsic properties of & ;},
that is its shape, its size, the possible coordinate systems,
etc.” It seems reasonable to build Conditions A and B into a
definition of asymptotic flatness. Furthermore they cannot
be made weaker and any replacing of them, e.g., replacing
condition B by “R,,” — O fast enough near .# *,” imposes
much heavier restrictions on the space-time. However, they
guarantee only the existence of # * and its similarity to
# 5 . They do not tell whether .# is essentially larger than
# ", whether # ~ exists, how .# * is tied up with the rest of
the space—time, i.e., “how much” the space-time resembles
the Minkowksi space-time near .# . This ‘‘degree of resem-
blance” is the crucial missing ingredient for a definition of
asymptotic flatness. Should we demand that Egs. (3), (4),
(5),2,,.%0,C,,,, = 0, etc. be satisfied? To see how far it is
reasonable to go in demanding Minkowskian behavior near
#~ we consider the possible behavior of the metric tensor on
a neighborhood of .# * .

Let x' = (u, 6, ¢ ) be a coordinate system for .# + and
x* = (u, w, 6, ) a coordinate system on a neighborhood U
of # * withew = 0on.# * . Since § is assumed at least C*on
£ we can write

g',u\’ = a,uv + ﬂ;zv(‘) + 7/;11[02 + 6;1\[‘)3 + 04 (6)
on U. In this notation 0, = O (w") stands for terms which
together with their derivatives with respect to x’ go to zero
faster than " ~ ¢, while their derivative with respect to w
goes to zero faster than «” ~ ' ~ € when @ — 0. Since # * is

isometric to .#,; we can choose the coordinate system so
that

&2 7 @
Hence we have

;=0 except a,=sin"a,;= — L. (8)
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Changing the scale of u on .# * we can make @y = — 1
(@070 since detg,,, 0 on # ). Thus the most general
form for g,, on Uis

0, —1+0, 0, 0,
—140, 0, 0, 0,
g(l) —
wv 0, 0, ~ 140, 0,
0, 0, 0, —sin’@ +0,

&)
which is a special case of Eq. (6). Setting more a,,,, B,,,,, etc.
equal to zero we can further specialize the metric. To exam-
ine the simplest possible form of ¢, we will need four more
forms. Let us define

gD =g with By=0, (10)

g}ﬁ:g}fg with a, =a, =a; =B =PFo =B =0,
(11)

g”f:? = gjffg with ypo=1. (12)

In general there is no transformation which will reduce
g2 10 85) or §) to g1, This will be proved in Sec. 4, where
we will examine the additional conditions the space-time
has to satisfy for these reductions to be possible. It should be
noted that from g, to £, &), etc. the metric of the space-
time looks more and more like the conformal Minkowskian
metric b;,,,.

3. CONDITIONS ON .7~

The candidates we will consider as additional condi-
tions on the space-time can be selected from the covariant
properties of asymptotically simple and empty spacetime
and perhaps some properties of the Minkowski space-time.

In what follows we examine each one of these condi-
tions, their relationships and how they affect the metric. An
evaluation of the consequences of each condition will indi-
cate which conditions should be included in a definition of
asympotic flatness.

(i) The condition 2,02 # Z 0: Since 2 = w we have
2, =0, =[0,1,0,0and 2,0% =00, =g
which vanishes identically on .# * for (") and consequently

all the other forms of the metric.

(i1) The condition .QJ_[‘ = 0: We have
.} =0, = —§T, 2 —BoFor g this condi-
tion implies

Boo=0, (13)

while it is satisfied automatically by £7), &) and g5

P

(ii1) The condition £2 2% = — 2: The implications of
this condition on &'\ and g'7) are complicated and, as it turns
out, they are not needed. For g the condition implies (for
the notation see the Appendix)

Py — 2700+ 2=0 (14)
while for g gives
@, =0. (15)

(iv) The condition 2 22 02 # = — 1: We have

S. Persides 1733



N0 04" =g =" + Y+ 0. [B*, ¥, etc. are
the coefficients of g#* in an equation similar to Eq. (6).] For

g\}) this condition implies 8" = 0, "' = — 1 which are
equivalent to
Boo =0, Yoo+ Boy” + sin " 20B,," = 1. (16)

For g7} the condition implies only the second of Eqgs. (16).
For g‘” the condition implies

Yoo=1, a7
while it is satisfied by g(4)

(v) The condition u,, ut=0,0. 0 w1, 0.6 o
etcetera: Obviously these conditions are satisfied (e g,
6,.0" = — 1) or imply some restrictions (e.g.,

u. #ui“ Za® = 0) for the metric. However, they have an es-
sential disadvantage: To write them down we have to assume
the existence of some new scalar functions u, 8, ¢, which
means esentially that a special coordinate system exists.
Such conditions should not be included in a coordinate inde-
pendent definition of asymptotic flatness.

(vi) The condition* 82, — 3§,.2.F = 2 0: In our coordi-
nate system this condition gives
‘Q;u\' - %g;txﬂ;pp 2 - I‘:;lu' + %ﬁooa‘uv = 0. (18)

Written explicitly this equation gives

/300 zﬁm -

Ay30="Bos ~ ay30=0.
(19)
These are restrictions for ) and g7, while they are satisfied

automatically by g¢) and gffi)

fa,,0=PF0 —

(vii) The condition o, Z 0: The shear of the congru-

ence of the curves along which u, 6, ¢ are constants is

Y 1
a'iur = P/l (y‘():\')/1 - ;‘Q P,u\’ (20)
where
P,=g,.+02,0, 2n
Evaluating ¢,,,. in our coordinate system we find
0 & = T o+ Po2a,, — 8.8)). 2)

Setting this quantity equal to zero we find again equations
(19). Hence this condition is equivalent to the previous one.

(viii) The condition £2,,, = Z 0: In our coordinate system
we have 2, v = - /‘“ Setting this quantity equal to zero
we find again Egs. (19). Hence this condition is equivalent to

condition (vi) as well as to condition (vii).

(ix) The condition @#pv £ 0: To explicity write this
condition we evaluate the components of the Riemann and
Ricci tensors from the unphysical metric in our coordinate
system. After some long but straightforward calculations we
find that the restrictions imposed on the metric can be given
by two sets of equations The first set results from the equa-
tions CO102 Cmm = COm = 0 which give
Romz = Rmm = R0123 =0or

@300 + Booz — Bozo =0, (23)
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— 503,0 =0, (24)
- Bos,z =0. (25)

The second set of equations is obtamed from

C0101 = Conz = C0113 = CIZIZ = C1213 = 0. Linear combi-
nations of these equations give an equivalent set of equations
with left-hand sides equal to Roon, Rty Rows,

R1212 — sin?6R ;;5, le, and right-hand sides contammg
only @, and B, (not 7,,, ). The remaining C Aupy = = 0 give
identities.

1300 + Boo,s

Ay300 — Xyz03 + Boz,:«

There are some essential differences between the two
sets of equations. The first set contains some @, and 5, but
N0 ¥, The equations of the second set contam Vo ina char-
acteristic way. Since each component of R aupv 18 €valuated
on./ ', thatis for o = 0, the only case where a y,,, will
appear in these equations is when R Aupv Nas fwo indices
equal to 1 so that the second derivative with respect to o will
generate from R, 1v the term y,, with coefficient + 1.
Hence the equations of the second set can be solved and give
explicitly Yoos 7/02, Vou Va2 — SIN20Y4;, ¥y, in terms of a,, a and
B, - Thus C, up» = 0imposes severe restrictions on 7, , that
is the third term in the expansion of §,,, in powers of .
Hence the first set of equations imposes restriction on g4,
and £, while it is satisfied automatically by £ and g The
second set imposes conditions on all forms of &, - It should
be also noted that the equations of the first set are conse-
quences of condition (vi) or (vii) or (viii), while the equations
of the second set cannot be related to any previous
conditions.

If Egs. (19) are satisfied, then according to Theorem 1
(Sec. 5) there is a coordinate system in which g, = &5). In
this coordinate system C; £2 0 gives only the second set of
equations which can be written (see the Appendix)

A=B=C=E=F=0. (26)

These equations will be used to study the relationships be-
tween the conditions C;,, ,, Z0and R, '=0(2").

(x) The condition R," = O (2 "): (a) Let n = 2. Then
7R 2= 0 and a straightforward calculation gives Egs.
(19). Consequently the condition R " = O (£2?) is equivlaent
to condition (vi) or (vii) or (viii).

(b)Letn =3.Thenf2 ,, Z 0and according to Theorem
1 (Sec. 5) there is a coordinate system in which g 18, = 5. In
this coordinate system the condition 2 ?R,,” = 0 gives (see
the Appendix) the equivalent set

A=B=C=D=0. Q27
Hence the condition R,," = O (£2°) implies only the first
three of Egs. (26). It does not imply E = F = 0, while also
gives D = 0, which is a completely unnecessary requirement
for asymptotic flatness.

(c) Let n = 4. Then again in a coordinate system in
which g, = ') we obtain Egs. (27) and the additional
relations

E.o = Fn =0, (28)
E, + 2cotfE 4 sin?6F ; =0, (29)
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E‘3 - Ez — COt0F= 0, (30)

G=0. (31
From Eqgs. (28)—(30) we conclude that sin’§-E and sind-F are
independent of u and satisfy the equation

(Y ,sinf) ,sinf + ¥ 3, =0. (32)
This equation coupled with the requirement that £ and F
must be regular on the unit sphere implies

E=F=0. 33)

Hence, asis wellknown,*”“R " = O (12 %) implies Egs. (26),
that is CAM,V = (. But it also imposes on the space~time the
conditions D = G = 0. The equation G = O gives the first
condition containing'’ 8, . Obviously there is no reason to
impose such severe and unnecessary restrictions on the
space-time.

Hence we conclude that R,” = O (£2 ") is either too
weak or too strong in order to have 2,,= 20and C, Ay = Z0.

(xi) The condition R £ 0: For “)and ') this condition

is complicated and it is not needed. For gf;"v) it gives

20— Vo + 1 =0, (34)

while for g

(xii) The condition R:W 2R #v: This condition gives
five relations containing @,,, and §,,, only and four also con-
taining some y,,,. However, these restrictions on the metric
are too severe and do not hold for metrics which satisfy the
Einstein equations.

it again gives Eq. (15).

(xiii) The condition R Aoy ZRM iupv: The same remarks
apply in this case as in the previous one. This condition im-
plies (ix), (xi) and (xii).

The following additional remarks can be made from the
study of conditions (i)—(xiii): (a) Conditions (vi)—(viii) and
(xa) are equivalent for any conformal factor £2 and indepen-
dently of any field equations. They cannot be derived from
any other condition.

(b) Condition (iv) is the only one which in the appropri-
ate coordinate system glves Yoo = 1, namely it makes g,
start with an »? term (as b , does).

(c) If conditions (iv) and (viii) hold, then condition (iii)
is equivalent to condition (xi) and condition (ix) implies (iii)
and (xi).

On the basis of the previous considerations it seems
that, if we want the space-time to have Minkowskian-like
metric near .# *, we can impose either conditions (iv) and
(viii) or (iv), (viii), and (ix) depending on how much we want
to restrict the space-time. Similar conclusions will be
reached in the next section from a study of the possible
transformations.

4. TRANSFORMATIONS

Studies of the asymptotic symmetries of an asymptoti-
cally flat space~time have been carried out'*'® on the phys-
ical space-time (.#, g) in coordinates (u, r, 6, ¢ ) and have
resulted in establishing an important group of transforma-
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tions, the BMS group. It can be argued however, that it is
more appropriate to study the asymptotic symmetries of a
space-time on a neighborhood of # + (which includes .# +)
and this is possible only on the conformal space-time (.4, §).

In this section we examine the transformations related
to the conformal space-time (¢, §) in coordinates (¥, , 6,
¢ ) on a neighborhood of .#™. Specifically, there are two im-
portant questions related to the behavior of  on a neighbor-
hood of # * . First, we can ask what transformations pre-
serve the form of ) or §7), etc. Second, we can ask whether
or under what conditions §(") can be reduced to £7), §2) to
&.), etc. The properties found exhibit many similarities with
previous results but also some striking differences which are
due to the fact that a conformal factor 2 has been used in

going from (.#, g) to (A, B).

In what follows we will repeatedly need a transforma-
tion of the unit sphere onto itself. To simplify the statements
and notation we willdenoteby {@,® | = R {@',® '} atrans-
formation (®,®) — (®@',® ) such that

d@? + sin*@d® = dO " + sin*@ 'dP’ (35)
for 0<®,0 ' mand 0< D, P <27 (the points @ = Oare iden-
tified with the points @ = 27). The necessary and sufficient

conditions for a transformation (®,9 ) — (@ ',® ) to be of
this kind are

96 )z - (aqb )z

_— O|l—| =1, 6
(a@' VT (39
(gg)z + sin’@ (%)2 =sin’@’, 37
aeo 3Je P JIP

R 2 P 8
e’ 3P’ +s 0’ P’ (3%)

The Jacobian J = J(©,@;0',®’) of such a transformation
(0,9) — (@',@) satisfies the equation

J?=5sin’@sin 20" (39)
Itisalsoassumedthat {@,@ } = R {® ', '} meansthat@and
@ may depend only on @', @, i.e., they are independent of
any other parameter or variable.

Now let (4,0,6,¢6 ) — (u',w’,8',¢ ") be a transformation
which is smooth (at least C*) on .# * with the hypersurface

F * givenbyw = 0 or o’ = 0. Such a transformation can be
written in the form

U=uy+ u@ + uw?+ 0, (40)
0 =00 + 0,0+ 0, 41)
0=06,+ 60" + 6,07+ 0, (42)
¢=¢+ 00" + 0" + 0, 43)

on a neighborhood of # + where u, G, d0, 1., &1, etc., are
functions of #’, 6/, ¢ '. Note that because of Eq. (41) a func-
tion which is O (@ ") is also O (@' ") and is denoted by O,, .

The calculation of the components g'(” is straightfor-
ward. The condition g'§}) = O, gives
30,/0u" = 3d,/Fu’ = 0. Hence 8, = 0,6 ',¢ ") and
éo = ¢o(0',¢ ). Then the conditions ) = — 1 + O,
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g9 = —sin®8’ + 0, and §'5Y = O, give Eqgs. (36)-(38)
with @, @, @', @' replaced by 6,, ¢, ', ', respectively.
Finally, from &'} = — 1 + O, we have w,(duy/du’) = 1.
The remaining g'{}) give no additional restrictions. Thus we
have the following proposition:

Proposition 1: The most general transformation which
preserves the form of g is given by Egs. (40)—(43) with

4

wo:‘ﬁo] =R {9',¢'}, (44)
o _ 45
@, 57 =L (45)

To preserve the form of g7 we add the additional re-
striction that §'§) = O,. Then we find dw,/du’ = 0. Hence
we have the following:

Proposition 2: The most general transformation which

preserves the form of §7) is given by Eqgs. (40)—(43) with
{Oodo) =R [6',9"}, (46)

Uy = —— W +), @7
wy

where @, and f are arbitrary functions of " and ¢ ’ only.

The transformation (46)—(47) is the closest we will find
to a BMS tranformation. The difference is that (46) has a
conformal factor equal to 1.

To preserve the form of &) we have to ask that
£6)= — 140,86, §be0,andg'R),§3,8'Ybe 0,. In
addition to Egs. (46) and (47) we find that the transforma-
tion (40)-(43) should satisfy the equations

0,% + sin®6,6,> + 2u@, =0, (48)
36, . ad, du,
— 0 26 —w,; =0, 49
90 )+ sin 056,¢1+ 88'(01 (49)
a6, . 9 du,
g ex’) —w, =0, 50
EYY 1+ sin oa¢,¢1+ 3¢’w1 (50)
96, . aé, du, du,
0, — 20, —- —_ 200, — =0,
' ou' + sin6o ¢, ou’ o ou’ > o’
(51)
a6, a6, ., . Oby db,  Juy dw,
— + /) Y+ ——— =0, (52
00 au " 30 ow | ou a6 52)
a6, 08 dd, 0 du, I
0 _.._1 ~+ Sin2 60 ¢0 _ﬁ + _.u~0_w._l- :O (53)
dd’ du’ dg' du’ Ju' dp'

Differentiating (49) and (50) with respect to ©” and subtract-
ing from (52) and (53) respectively we find

dw,/30' = Jdw,/d¢ ' = 0. Differentiating (48) with respect
to ' and subtracting from (51) we find @, = 0. Finally we
solve (49) and (50) with respect to &, and ¢,. Thus we have
the following proposition.

Proposition 3: The most general transformation which
preserves the form of g§3> is given by Egs. (40)-(43) with

v

{Boto} =R [68'], uo=7u‘—[u'+f(e',¢')], (54)
1

_ J(fido) » 1 J (f,eo)
JOpdo) | siny J Boubo)

1 =

(55)
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w, = const£0, w, =0, (56)

L= i)2]_[(63' )2+ sinlze'(aisf' )2] S

where J (6,9 ) is the Jacobian J (®,9;6 ',¢ ).

Note that in the above transformation 6,, &, f, u;, 8,,
and ¢, dependonlyon8’,¢ ', whilew, isindependent ofu’, 6 ',
¢

Finally, to find the transformation which preserves the
form of g we add the condition §'§) = &'> + O,. We find
no additional restriction for the transformation. Hence we
have the following:

Proposition 4: The most general transformation which
preserves the form of §3!) is given by Eqs. (40)~(43) with Egs.
(54)~(57) satisfied.

It should be emphasized that the coefficients of »’ (e.g.,
u,, 0,, etc.) which do not appear in each case are completely
arbitrary. Also the transformation of Proposition 3 or 4 con-
tains the transformation {6,,6,} =R {0',¢ '},
uy=u' + f(0',¢6") which is a BMS transformation with
conformal factor K = 1. If T, T, T, T, are the classes of
transformations which preserve £, £7), £5), 857 respective-
ly (that is the transformations of Propositions 1, 2, 3, 4), then
the following can be easily proven:

Proposition 5: Eachone of T, T,,, T, T,is a group
and 7' DT, D21, =T,

We turn now to the second general question: Are there
transformations which reduce one form of §,, to another?
To reduce g, to g7} we must find a transformation which
satisfies Eqs. (44) and (45) and gives g = O,. This condi-
tion gives dw,/du’ = 1/, which does not contradict with
Egs. (44) and (45). Hence there is such a transformation (but
it depends on the metric). To reduce 7 to g, we must find a
transformation which satisfies Eqgs. (46) and (47) and six
more equations with left-hand sides those of Eqs. (48)-(53)
but with right-hand sides linear combinations of
Bows Boz Bos A1 A1y 3. After some calculations it can
be shown that this system has no solution in general. Hence
in general §7) cannot be reduced to g5, Finally, toreduceg,)
to gff", we must find a transformation which satisfies Egs.
(54)—(57) and gives §') = o> + O5. This condition gives
Y00 = 1 which is not true in general. The above results are
summarized in the following proposition.

Proposition 6: There are transformations which will re-

duce g to g2). In general there are no transformations

nv
which will reduce g7 to g5 or g to &5).

We conclude that if we want an asymptotically Min-
kowskian space-time to behave as £, or £5.) in some appro-
priate coordinate system, this property must be imposed on
the space-time by a coordinate-independent condition.
Hence we have the same choices of appropriate conditions as
in Sec. 3. We have only to find out which conditions will
guarantee the existence of a coordinate system in which the

metric will have the form of &) or &),

Ifg,, =g v ~ can easily prove that there is a unique

uv
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choice of u,, 6,,4, such that the transformation (40)—(43)
gives§1,, £1,,81;all 0,. Hence we have the following proposi-
tion which will be used to simplify g, in the definition of
Sec. 5:

Proposition 7: If §,,, = g), then there is a coordinate
system in which g, = g7, where §C) = %) but with

B =ﬂ12=/313=0~

5. THEOREMS AND DEFINITION

In this section we give two theorems which relate the
conditions of Sec. 3 to the existence of a coordinate system in
which the metric takes a specific form and two theorems
which essentially give the necessary and sufficient condi-
tions on the Ricci tensor of the physical space-time in order
to have @upv £ 0. These theorems indicate which space—
time should be called asymptotically flat in order to have a
definition in a covariant way as well as in terms of a special
coordinate system.

Theorem 1: Let a space-time (.#, g) be weakly asymp-
totically simple at future null infinity and (.#, §) the confor-
mal space with conformal factor 2 and (future null) bound-
ary £ * defined by £2 = 0. Then the hypersurface .# ¥ is
isometricto.# ;; and £2,,, = Oifand only if there is a coordi-
nate system (¥, , 8, ¢ ) in which £2 = » and in a neighbor-
hood of # * the conformal (unphysical) metric is of the
forrng 73 for — o0 < < 00, 0<w <wy and 6, ¢ as usual.

Proof: Let.# * beisometric to.# ;; and £2,,, = 0. Then
a coordinate system (u,,0,¢ ) exists (Sec. 2) with w = 2 in
which on a neighborhood of .# * the metric is of the form
gL In this coordinate system the equation £2,,, = 0 gives
Boo = Boi — 3110 = Bor — @120 =Pos — @130 = 0. From
the transformations considered in Sec. 4 we choose
u=u+tuo, 0o=0,0=0"+60w,¢=¢"+ ¢ 0. Each
oneof a,,, @y &3, Boos Bors Boas Lo is a function of u, 6, ¢.
Expanding in powers of o' we have

a,(u,0,6) =al, + 0,

da,(u,6,6) 32,
Qirg = = + 0,, etc.,
120 du au’ :
where @}, = a,,(u',0",¢ "), etc. Hence we have
1 daf, da?,
Bo=89
00 =P o > =83 02— o
da,
=89 - =0.
03 = =

Because of these equations the above transformation with
Cuy=4[a} + (@) + sin6 (@)1,

— 0 - 0
0, =ay, ¢, =sin?0'al,

reducesg’)tog ). Thisis proved easily by direct calculation of
&€'(). The converse is obvious because the hypersurface ST
(@ = 0) has induced metric Vyand 2, = Qis satisfied auto-

matically (Sec. 3).
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Theorem 2: Let (A ) (# .§), # *, £2 be as Theorem 1.
Then # * is isometric to .7 ), £2,,, = 0 and
70 2% = — 1if and only if there is a coordinate system
(4, w, 6, ¢ ) in which 2 = & and in a neighborhood of .#
the conformal metric is of the form &) for — o0 < < c0,
0<w < w,, and 6, ¢ as usual.

Proof: Let .# * be isometric to .# 7, £2.,, £ 0 and
2 0, 02*Z= — 1. Then(Theorem 1) thereis a coordinate
system (u, w, 8, ¢ ) in which {2 = @, and the metric is of the
form gG). In this coordinate system the condition
2 - 2.() 2% = — 1 gives [Sec. 3, condition (iv)] yo = 1.
Hence the metric is of the form g). The reverse is again
obvious.

From Theorems 1 and 2 we conclude that an appropri-
ate definition of asymptotic flatness should include a de-
mand for the conformal metric to behave as g5 or, better,

g, Unfortunately it seems that there is no similar theorem
for C oy = £ 0. However, if C; Apy = £ 0, then we can still give a
general explicit expression of the metric which automatically
satlsﬁes the conditions 2,,, 20,2 ~22 2#= —1,and
C, Ay = 2 0. Furthermore, a]though C upy = S 0 is not equiv-
alent to a condition of the form R,” = O (2 "), we can find
conditions for the physical Ricci tensor which are equivalent
to @WV £ 0. From the structure of Egs. (A15)—(A23) we
observe thatinordertoget4 = B = C = E = F = Qwithout
getting D = G = 0 we have to somehow substract the deriva-
tives of R,° from the other components of R .- Testing sever-
al tensor expressions we find the following theorems:

Theorem 3: If a space-time satisfies conditions A and B
of Sec. 2and £2,,, = 0, then the condition C, Apspv Z 0is equiv-
alent to the condition S,,,* = O (2 %), where

Sin” =R+ 2R, (38)

Proof: Since 2., = 0, there is a coordinate system in
which g,, = g5). In that system the components of S,,,” are
given by Egs. (A24)—(A34). Each of the conditions
@W‘. £ 0 and S,/ =02 ) is equivalent (in this coordi-
nate system) to the set 4 = B = C = E = F = 0. Hence
these two tensor conditions are equivalent.

Therorem 4: If a space-time satisfies conditions A and
B of Sec. 2, then the conditions £2_,, = 0 and a{#p,, £ Qare
equivalent to the conditions R,," = O (2 %) and
S, =02*.

Proof: This is a direct consequence of the equivalence of
the condition £2,,, < 0 to the condition R,* £ O (2 %) and
the previous theorem.

As a result of the established properties (Secs. 3-5) we
propose the following definition:

Definition: A space-time (.#, g) is asymptotically Min-
kowskian at future null infinity if it is weakly asympoticaily
simple (let £2 be the conformal factor, .# be the hypersurface
{2 = 0, and g the conformal metric) and satisfies one of the
following three equivalent sets of conditions:

(a) There is a subset # + of .# which is isometric to
Fypandon St 2720 NHZ L,2,.£0C,,,, 20
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(b) There is a subset # + of .# which is isometric to
S y,andon S+ 27D NHE LR, =0(®?,
S, =0 M.

(c) Thereis a coordinate system («, @, 6, ¢ ) in which on
aneighborhood of a subset.# * of # we have {2 = w and the
unphysical metric is of the form

unphysical metric is of the form

@'+ 0. —1+0, ([sin?0V + {U— @), + cotdU |e* + O,
i = 0, 0, 0,
" o - — 1+ (@ + Do + (W~ 1oU)w* + O, 2Wo — PV + 0, '
— sin?0 + sin?d(@ — U)w + sin*d(W + 1PV)w’* + O,

[V, + cotdV — K@ + U) 1} + O,

(59
where — w0 <U < o0, 0<@ <w,, 8, ¢ as usval and U, V, W are functions of «, 8, ¢, while @ is a function of 6, ¢ only.

Obviously in this definition the condition £2, , Z 0 can be replaced by the equivalent condition (vi) or (vii) of Sec. 3.
Furthermore, since the condition £2 202, 2 # £ — 1 has been included in the definition, the requirement that a subset ¥ * of ¥
isometricto.# ; exists can be weakened. If S ?is the unit two-dimensional sphere with the usual metric imposed onitand R ' the
real line, then it is enough to assume that .# DR ' X 2 Then there is a coordinate system (4, 6, ¢ Jon.# = = R 'x S *in which
the metric 7, is of the form given by Eq. (2) with perhaps 75,+0. But 2, 2 * 2 0from which 74, = 0. Thus .# * isisometric to
4 4 . Finally, it should be emphasized that the fact the metric can be written explicitly as in Eq. (59) is due to the tensor
conditions of the definition and the property that Egs. (26) can be solved explicitly with respect to the ,,,’s they contain.

6. REMARKS AND CONCLUSIONS

Since many properties of the space-time we want to call
asymptotically flat are consequences of C;,, 2 0 we have
included this condition into the definition of asymptotic flat-
ness."” Thus we propose that we distinguish four classes of
space-times. In increasing order of specialization these
classes are:

1. Weakly asymptotically simple space—times denoted
by WASS.

2. Almost asymptotically flat space-times (AAFS)
which also satisfy Condition B of Sec. 2 and £2,,, = 0,

270, 0" = 1.
3. Asymptotically flat space-times (AFS), that is
which also satisfy the condition C, .. =0.

4. Asymptotically flat and empty space—times (AFES),
that is AFS which also satisfy the condition R,," = 0 (2%).

The definition given in the previous section refers to the
third class. The corresponding physical metric in coordi-
nates (&, r, 6, ¢ ) can be compared to metrics used in previous
works. The metrics used by Bondi et al.! and Sachs® have
ay =a;=a;=PBy=Pu=PBy="PRs=0Vp=1and
hence satisfy £2,,, = 0and 2 ~ 22, 02* 2 — lasaresult of
their construction. The metric used by Persides®® has «,,
a5, @y, By different from zero. Hence in general it does not
represent asymptotically flat space-time. However, if we as-
sume the Einstein field equations, then the coefficients satis-
fy Egs. (19) and the space-time becomes asymptotically flat.
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[
Properties of asymptotically flat space-times can be

proved easily in a coordinate system in which g, = g,

Thus if
L,u\' = R;u' + KRg;u" L,uv = R,uv + KRg.‘uw (60)

where « is an arbitrary constant, then straightforward calcu-
lations on .# * give

L0220, L,0v2-a, (61)
Ly 2#0720, 2, .0%2 0,0, (62)

Properties of almost asymptotically flat space-times
can be established in a similar way. For example, we can
prove that for an AAFS energy can be defined iff
N .o 2 _ 20rR = 0. The proofis simple in a coordi-
nate system in which g, = g7, since there Eq. (14) or Eq.
(34) imply Eq. (15) which is the necessary and sufficient
condition for the convergence of the energy integral (then
and only then the integrand® starts with an w* = r? term).

Throughout this work we studied asymptotic flatness at
future null infinity. Past null infinity can be studied in a
similar way. Also the global requirement that .# * be iso-
metric to.# ;; can be relaxed to incorporate space—times
which have a part of .#"' removed. Thus we can have partial-
ly AFS which satisfy the requirements of the AF space~time
on some three-dimensional subset .# ' of # such that
is isometric to a subset of &} .
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APPENDIX

Letg,, be the physical metricandg,, = §2%g,, the un-
physical metric as given by Eq. (6). We define

1
D= —— B Al
3By + BYre B (AD
1
U= —_ , A2
46— =B (A2)
V=1}B (A3)
1
Ww=1 —_— Vs, A4
3Vt o6 V33 (A4)
A=y —1+@,, (AS)

B=yy — — Vit 3(@—U),—cotdU — 4B,
sing '
(A6)
C=vp—V,—cot@V+ LD+ U); - 4610 (AT)
D=4y +2W 4 YD+ U + —2 b
sin%6
Biss
=By — ——= —Fieotd =B (A8)
SIn@
E=3rn— ! Vi +3PU -4
2 2S[n29 33 2 12,2
{
+ mﬁmd ~+ %coté’ﬁlz, (A9)
F=vyy+ PV~ 46,3 — 45,3, + cotbf,,, (A10)
3
G = 65, + 38,, + DTy 833
sin’g
+ (terms with 5, and 7, only). - (A11)
If there is a coordinate system in which g, = g%, then

straightforward calculations in this coordinate system give
the (unphysical) Wey! tensor

_ 258 - _ cf2S¢
3Co101 & 6Cpyy, = 68in70C,5,3 & — 28in?0C,55, 2 4,

(A12)

2Co, & — 25in?0C,3,; & — B, 2Cy3 2 2Cp 2 —C,
(A13)

Cion & —sin6C,,,, 2 F,

Ci.i; 2F, (A14)
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with zero the remaining components. In the same coordinate
system g, =g\ = £27g)) and the (physical) Ricci tensor
can be written (with 2 = ©)

R, =C&’'+ D0+ 0, (A15)
with
C2=C?= —4, C°=C?=B,
C’= sin’HCf =C, C°=D, (A16)
DO" = D,l =1iD,, DO1 =A, DU2 = Dz1 =8B, (Al7)

Dysind=D,'=C,, D°=G, D?=sin’6D, =F,,
(A18)

D} —E,=Dy+E,= — @A+ B, + cotfB + sin ~*6C,

(A19)
D,’=®B+ 1D, — E, — 2cotfF — sin " *6F ,, (A20)
L =@C+ 4D+ E, — F, — cotbF, (A21)
D’ =Q@+ U)B+ 3,4 + 4D, +sin ~%0/3,,C
— £, — 2cotbE — sin“F ;, (A22)
D/sin’0 = (2@ —~ U)C+ B34 + 5D, + 3,,B + E,
— F, — cotdF, (A23)

with the remaining C,,” equal to zero. Finally for ;" we
have

S, = "/f).ﬂ"a)z + IZ,IH"(U“ + 0, (A24)
with
= =3B, 0= —4C, = =44,

(A25)

Yot= = Dot =34,"= — 1B,
V= —sint0y =1 = — 3Co (A26)
Val=Ugt= =44, U= -4,
YhG =14, (A27)

Y12 =43P ~ U)4 ~ B, — cotB — sin ~26C, — E,,,

(A28)
Y1y =143® + U — B, — ycotfB — isin ~0C , + E,,
(A29)
Y= — VA + 3B, — LeotdC — F,, (A30)
Tyt = — VA + dsin 7260C, — LcotfC — Lsin < 26F,,
(A31)
"= — @B + Lsin ~20VC + E, + 2cotbF +sin  “OF ,,
A32)
Y= —~®C+LVB —E, + F, + cotdF, (A33)
Zo'=4VA+ 3B, —4C,, (A34)
with the remaining “ 4, and Z ;" equal to zero.
S. Persides 1739
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flat spacetime
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This paper studies the conditions under which Cauchy data (g,7,7,T) for an asymptotically flat
spacetime are determined by the freely specifiable York data (g, o, v, T) (7 = 0), where tr,o- = 0,
div,o- = 87v. It is shown that the space of such o’s is infinite dimensional. Furthermore,it is
shown that (g, o, v, T) determine conformally equivalent Cauchy data if and only if g is
conformally equivalent to an asymptotically flat metric with nonnegative scalar curvature.

INTRODUCTION

In the Cauchy formulation for constructing a spacetime
satisfying the Einstein field equations, G, = 87 T,,, and
containing a spacelike hypersurface M, one specifies the fol-
lowing initial data on M (see Choquet-Bruhat and York, '
York, 2 or Fischer and Marsden * for various general treat-

ments of the Cauchy problem):

Z-a Riemannian metric on M,

77—a symmetric covariant 2-tensor on M,
v—a vector field on M,

T-a positive function on M.

(In some formulations 7 is given as a tensor density; we
will use tensors throughout the paper. Also, unless explicitly
written otherwise, we will treat all tensors in the form with
allindices lowered.) 7 is the momentum conjugate to the g ’s
and is related to the second fundamental form & of the em-
bedding of M in the spacetime by the formula
7 = (tr; k )§ — k. v is the current density of 7, on M and T
is the energy density of 7,,, on M (hence 7>0).

The initial data (g,7,v,T') are not freely specifiable but
must satisfy the constraint equations:

divg7 = — 87%, R @)+ {tr7)’ — 7w = 1677 ©)

Our notation using the summation convention is div, &
=k, kk =k ®k,, tr, k = g°k,,, and R (g) is the sca-
lar curvature of g. Differentiation is taken with respect to g.
Using conformal methods, York determined the freely
specifiable “pieces” of the initial data (York, > York, *
O’Murchadha and York ® and Choquet-Bruhat and York').
These are

g—a conformal metric on M,

o-a symmetric 2-tensor satisfying tr,o =0,
divg o = 8mv,

v-a vector field on M,

T—-a positive function on M,

7—a function on M.

“This research was partially supported by a National Science Foundation
Research Grant.
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T is the mean curvature of the embedding of M in the con-
structed spacetime. ( g,0,v,T,7) is called York data on M.

Ifit is assumed 7 is constant on M, one can determine an
initial data set ( g,7,%,T ) from York data ( g,0,v,T,7) by
solving

- — 2
840 —R(gp+Mp ~ "+ 167Tp >+ 79> =0, (1)
where >0, 4,¢ =g “°p|,s, and M = 5.0>0. Then
E=pgk=¢ o+ ping T=(ukE—k
v=¢ ~ ', and T= @ ~® T. Note that g is given only up to
conformal equivalence. Because of this, the initial data
(g,7,%,T) is uniquely determined by the York data in the
following sense: If we start with g’ = a *g, and set
od=a o v=a"" T =a T, and 7 = r, then
(g,o0.v,T,7)and (g',0',v',T’,7'} determine the same initial
data (York 2%).

In the asymptotically flat case with M = R 3, it is usual-
ly assumed that 7 = 0. This allows M to be spacelike at infin-
ity. (For a discussion of asymptotically flat spacetimes al-
lowing such spacelike hypersurfaces, see Cantor et al. ® and
Tipler and Marsden. 7) Thus, the York data will from now
on be given as a 4-tuple ( g,7,v,T'). Also, certain growth con-
ditions are assumed as |x|— o« (see Regge-Tietelboim ®):

gy — 8~ x| %,
v,T,R~|x| =3,
o~|x| "%

Also, werequire that theinitial data ( g,7,, 7) preserve these
conditions. We accomplish this by finding a solution to (1)
with the property ¢ — 1 ~ x| ~'. Using weighted Sobolev
spaces we will make these conditions more precise below.

In order to carry out York’s program we need to solve
two problems:

1: Does there exist nontrivial ¢ for a given metric g? 2:
Can we use Eq. (1) to find to conformal factor? Using a result
found in Cantor, ° it is easy to show the space of o’s is in fact
infinite dimensional (see below) and so problem 1 presents
no difficulty.

Problem 2 is more difficult. Equation (1) is very nonlin-
ear. However, we do have the conformal invariance de-
scribed above at our disposal. In solving problem 2 there is
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an immediate necessary condition. If we start with a metricg
and construct initial data containing g = ¢ ‘g we find from
Egs. (C) that when 7 = O then R = 7.7 + 167T>0. Thus it
is necessary that our initial g be conformally equivalent to
one with the appropriate growth at infinity and possessing
nonnegative scalar curvature. We show below that the above
necessary condition is sufficient. This represents a substan-
tial improvement on previously known results (see Cantor, °
Chaljub and Choquet-Bruhat '°). Previously, certain ine-
qualitites between the R, M, and T coefficients were needed
to show (1) may be solved. This paper is the first giving both
necessary and sufficient conditions for the York variables to
specify initial data.

One question that is left unresolved is the following: Is
any metric g;on R’ withg; — &,~ [x| ' as |x| >0 con-
formally equivalent to one with the same asymptotic condi-
tions and nonnegative scalar curvature? If this is resolved in
the positive then we would know that in the asymptotically
flat case every set of York variables do specify initial data.

1. WEIGHTED SOBOLEV SPACES

In order to make precise the asymptotic conditions on
the various pieces of the data and also to establish certain
necessary technical lemmas, we introduce the following
weighted Sobolev spaces:

Definition 1.1: Let p>1, seN and 5€R, and
o(x) = (1 + x| 3" For fR"—R" set
| f 1 pss = Zjajesl0® T 121D f| , where | [, is the standard
L7 norm. M % (R",R™)is the completion of C 7 (R",R™) with
respectto | |, .5

We can specify the asymptotic behavior of a function by
assuming it belongs to the appropriate M 5 space (see be-
low). But first we state some lemmas which we shall need
later.

Lemma 1.2: Let p> 1, s> n/p, 530 and 0<I<s. Then
pointwise multiplication induces a continuous (and hence
smooth) map:

MEXM?_ 5. —>M7 15,0

For a proof see Cantor, '' Proposition 1.1.

An immediate consequence is the following:

Lemma 13: Let M P (1) = { gR® >R, g — 1eM /5} be
given the topology such that the map g —g + 1 from M [5 is

continuous. Then for p> 1, s> 3/p, §>0, 0<I<s, multiplica-
tion induces smooth maps:

MEOXM}_ 5, (D)->MP 5, ,(1),
MPEXM? s (D)>MP_ 5.0

Definition 1.4: Let S s = {symmetric covariant 2-ten-
sors in M £} and R /s = {Reimannian metrices g;on R 3
such that g; — 6,5 5s}.

We will need the following theorems concerning elliptic
operators.

Theorem 1.5: Letp>3,5>3,0<6 < — 2+ 3(p — 1)/p,
geR Fyand feM P_, 5 , , with f 0. Then if
A(p)=A4,p — f@ and2<I<swehaveAM [ —>M[ 5,
is an isomorphism.

@
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Proof: This is a simple extension of Theorem 1.4 in
Cantor. 2

Theorem 1.6 (The maximum principle): If @ isa C*
Sunction and A gp>0 (resp. <0), then ¢ cannot have a maxi-
mum (resp. minimum) in any open region in R, unless ¢ is
constant.

Proof: This is a standard result. See for example Protter
and Weinberger. '*

Theorem 1.7: In a region G let a second order elliptic
linear differential equation have two C* solutions u(x) and
v(x). Suppose they satisfy the conditions:

(i) throughout G, u(x)>v(x);

(ii) at a point x,€G such that there exits a closed sphere
SCG containing x, in its interior or on the boundary,
u(xo) = v(xo) and Tu(xe) = v(x, ).

Then u(x) = v(x) throughout G.

Proof: This is a special case of Theorem A in
Aleksandrov. **

2. INITIAL DATA SETS

In light of Theorem 1.5 we will make the following
choices which will be used throughout the paper:

p>3,
523,
0<8< —2+3(p—1)/p.

With these choices we may specify the asymptotic con-
ditions mentioned in the Introduction.

Definition 2.1: An asymptotically flat York data setisa
4-tuple ( g,0,v,T) where geR ’; (recall Definition 1.4),
oeS P 5, Withtr,o =0and divyo = 8mv,
veM? 5, (R R and TeM 7_, 5 (R’ R) with T>0.

To show such data exists and to solve problem 1 of the
Introduction, we have the following theorem:

Theorem 2.2: Let geR Fsand veM f_, 5, ,. Then the
space of solutions to

tr,o = 0, divyo= 8, 3)

in an infinite dimensional affine subspace of S¥_, 5, 1.

Proof: Recall the definition of the conformal Killing
operator L, for vector fields on R LLX =KX — -j—
(div, X )g where (K X )i=Lxgy= X+ X, Wewill re-
quire the following two lemmas:

Lemma A: div,oLMs—M? ,;, ,isan
isomorphism.

This is proven in Cantor. '2

Lemma B: The space of solutions to (3) with v =0 is
infinite dimensional.

This is found as Theorem 3.7 in Cantor. °
solution of the form k = L, W with WeM [s. Note that any
such 2-tensor satisfies trk = tr (L W) = 0. Now using
Lemma A, write W = (div,0L,) ~ '(div,87v) €M 5. It is
clear that k = L W satisfies (3).

Now consider J = {k + jdiv, j=tr, j=0,
jeS?_ s} From Lemma B we see J is the desired infinite
dimensional affine subspace of S 7_ | 5, Q.E.D.

We now come to the main result:

Theorem 2.3: Let (g,0 v,T') be an asymptotically flat
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York data set. The following statements are equivalent:

(I) There is a g'€R ;s conformally equivalent to g with
nonnegative scalar curvature.

(IX) There is an asymptotically flat initial data set
(g, T:ﬂ which is conformally equivalent to ( g,0,Tv).
Moreover (§,7?,7_‘,17) depends smoothly on ( g,0,T,v).

Proof [(I1)—(I)]: We have that g is conformally equiv-
alent to g and that g, 7,7 must satisfy Eq. (C) in the Introduc-
tion. Thus R () + 5(tr,7)’ — 77 = 16T Also recall
7=tryk§ —k where k =¢ ~?0 (&= @“g). Thus
tr,k =g"%; =¢ ~° g%, =0and so tr7 = 0. Thus since
T>0 we have R (2)>0.

[(D—(D)]): Recall from the Introduction the desired
conformal factor ¢ must satisfy the following problem:

84,90 —R(g¢+ Mg ~ "+ 167Tp > =0,
@ — leM /5, ©)
@>0.

The condition ¢ — 1eM [, implies after application of
Lemma 1.3 that geR /5, etc. Thus the proof of the theorem
results on showing (1) is sufficient for (4) to have a solution.
Step 1: Let g satisfy (I). Then there is a aeM ! (1) such
that g' = a *g has zero scalar curvature.
The desired function @ must satisfy the following prob-
lem (see O’Murchadhu and York %)

84,0 —R(g)a =0,
a>0, (5)
a—leM?,

Using condition (I) we may assume R ( g)>0. Writing
a =1+ & we find

84a —R(g@=R(g).

It follows immediately from Theorem 1.5 that there is
such a aeM ;. We need only show a = 1 + @ >0 on all of
R *. Suppose there were an x,eR* such that a(x,) <0. We
can suppose x,, is a minimum for a. In a neighborhood of x,,
we have 84 o = R (g)a<0 and so a cannot take a mini-
mum. Thus a>0. If there were an x| such that a(x,) =0,
then x, would be a minimum and so \ya(x, ) = 0. However
¥ = Ois also a solution to the equation. Hence from Theo-
rem 1.7 we have a = 0 everywhere. However, a(x)—1 as
|x|— 0. Thus we have a contradiction. Hence a > 0. This
ends the proof of step 1.

Step2:Let M,TeM _, 5, ,andgeR f;withR (g) =0.
Then (4) has a unique solution @. Furthermore, ¢>1.

Proof: We first show (4) has at most one solution. Note
if ¢ — 1eM 7, then ¢ is C* and we may apply a maximum
principle. Suppose ¢, and @, are both solutions to (S). Let
h =@, — @,. Then heC* and h (x)—0 as | x| — 0. Assume
without loss of generality that 4 > 0 somewhere. Then there
is an x,€R” such that 4 (x,) > 0 and x, is a maximum for 4.
Now

B h= —Mp; " —@, N—16aT(p > —p, )

and @(xo) — @x(xg) >0 and @ | “(xo) — @ ; (xo) <O for
> 0. It follows that 4, 4 (x) > 0in a neighborhood of x,, and
$0 X, cannot be a maximum. Thus 4 = 0.
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To see > 1, note since u—1 as |x|— o and geC? then
A p is continuous and hence @ > 0 everywhere. It follows
that 4 ¢<Oon R ? and so by Theorem 1.6, @ cannot take a
minimum. However, if ¢ < 1 somewhere it must have a
minimum.

To show existence we use a continuity argument. Let
S = {£€[0,1]: (4) has a solution for s€[0, ] using sM and sT }.
We will show S = [0,1]. We know fors=0thatg = lisa
solution. Hence 0cS. We now show S is open in [0,1].

Consider the operator

VME(DXM? 55 2 XM?P 55, 7>MFP 55,5

(see Lemma 1.3) where ¥ (p,M,T) =4 9 + Mg ~’

+ 16T ~*. It follows from Lemma 1.3 and standard re-
sults on the inverse in a Banach algebra (see Dunsford and
Schwartz '°) that ¥is C * at any (p,M,T) if p>c> 0.

To show S is open, we use the implicit function theo-
rem. Let 7€S. Then by definition for z€[0,7 ] there is an
@-€M Fy(1) such that ¥ (@, tM,tT) = 0. We also know
@;>landso ¥Wis C = at (¢, tM, tT). To show the equation
¥ = 0 may be solved locally we need show
D\V(p, M, tTy: ML—M? , . ,is an isomorphism.
However,

D\ (@, M (TY(f) =4, f— [TtMp [ ° + 48wt T, *] f.
It follows from Theorem 1.5 that this is an isomorphism.
Thus (4) may be solved for slightly larger ¢ and so .S is open.

There is a maximal interval of the form [0,f,) in §. We
need only show (4) is solvable at ¢, . For then [0,z,]C .S and
the only open set in [0,1] of this form is [0,1].

For 1€[0,2, ) there is a ¢, €M Fy(1) such that
¥ (@, tM:T) = 0. It follows from the implicit function ar-
gument given above that ¢t -»g, is C ~.

Claim 1: {@,:t€[0,t;)} is uniformly bounded in M Z(1).

We write @, = @, + 1 and find &, satisfying the
problem:

AP, = —t[ M@+ 1) "+ T@+ 1)

Now {¢ [M(F,+ 1)~ 7 + T(@, + 1)~ *]} is clearly bound-
edin M s, ,. But from Theorem 1.5, (4,) " ': M §5 , ,
—M {5 is a bounded operator and so {, } is bounded in
M { . The induction argument proceeds identically after ob-
serving if {@;] is bounded in M f;, then
(t[M@,+1) "7+ T @+ 1)~ 1} isboundedin M /5 , ,.
(If s is odd, start the second step at £ = 1.) Thus {g, } is
bounded in M [; and {1 + &, | is bounded in M f5(1).

We now show there is a C > 0 such that

dp,
dt

Using implicit differential differentiation on
We,, tM, tT) = 0 we find dg, /dt satisfies the equation:

de, dg
84— — (Mg " ® + 487Tp —4H
£ (Mg, Tlp, )dt

= —Mp, 7~ 167Tp, >

First note (dg, /dt )(x)>0 for all t[0,¢, ) and all xeR *. If not,
dg,/dt would have negative minimum. However since

<C for all r€]0,z,).

p.56
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@,> 0 we find, using the above equation, that 4 (dg,/dt)
would be negative in a neighborhood of that minimum. This
contradicts Theorem 1.6.

If follows that
d
3437:;—’ >— Mg 7 —167Tp >

>84,04 ;'(— Mg, 7/8 = 21Tp %)),

where 4 [ "M ?_, 5. ,—M [sis the bounded operator
guaranteed by Theorem 1.5 and the closed graph theorem
and so

dg, o M

8Ag<7 — g (—‘ —8—¢)IA7—277'T¢71_3))<0.

Using the same maximum principle argument as above we
find that

dg, Aq( M
dt &

or

d
OQ—d‘-’;—lgAg* l(— %—[¢J,’7—-217T¢Jf3). (6)

We know ( — M@ ;[ 7/8 — 27 [ *) is uniformly
boundedin M ?_, 5 , for t€[0,z,). Since 4, is a bounded
operator we have that 4 ; '(— Mg [ 7/8 — 27T ) is
uniformly bounded in M 75 for £€[0,¢, ). In particular, it is
uniformly bounded in M £;. It follows from (6) that de, /dt
is uniformly bounded in M §s.

We now may use Eq. (5) and the same induction argu-
ment found in claim 1, to find dg, /dt is uniformly bounded
in M Pfor te[0,¢,).

Let ¢, 12, . It follows from the Mean Value Theorem that
foralliandj, |@, — @, | p,s<C |t;— ;|- Thus {@, ] isa
Cauchy sequence in M Z4(1) and hence converges to
@oeM F5(1). By continuity of ¥ we have ¥ (@, 1M, t,T)

= 0. Also it follows from the maximum principle that > 1.
Hence (4) may be solved at ¢, and this completes the proof of
step 2.

Step 3 (Completion of the proof): Let (g,0,T,v) be a
York data set satisfying condition (I). From step 1 we may
find zeM P5(1) such that if we set g’ = a ‘g, R (g') = 0. We
nowsetv =a ~ %, T'=a 8T, 0’ =a ~ Yo and consid-
er the problem
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84,9 +M'p ~7 +16sT'p ~* =0,
P — IEMSfo
@>0,

where M’ = 0’-0’ = a ~'> M. From step 2 this has a unique

solution. Wenow setg = @ %¢’, ¥ = (pa) ~%0, v =9 ~'%,

T =@ 3T’ and obtain the desired initial data.

The smoothness assertion is immediate from the Im-
plicit Function Theorem and Lemma 1.3. Q.ED.

Remark: It remains an interesting question to deter-
mined which geR £ satisfy condition (I). It is trivially suffi-
cient that R ( g)>0. It follows immediately from the Implicit
Function Theorem application in the proof above that it is
sufficient that g be sufficiently close to the Euclidean metric
inR 5.
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Characteristic surfaces and characteristic initial data for the
generalized Einstein-Maxwell field equations
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The characteristic hypersurfaces of the source-free generalized Einstein—-Maxwell field
equations are investigated. It is shown that such hypersurfaces can be null, and it
appears as though they may also be spacelike or timelike. Examples of characteristic
initial data on spacelike and timelike hypersurfaces are presented, and it turns out that
these examples involve very intense gravitational and electromagnetic fields when the

coupling constant k is small in magnitude.

1. INTRODUCTION

In the generalized Einstein—Maxwell field theory the
equations governing the symmetric Lorentzian metric ten-
sor g; and the antisymmetric electromagnetic field tensor

F;, in the absence of sources, are'

GV=8m(TY+ ka), (1.1

Fij;]_ + %kac;a*R siabe __ 0, (1.2)
and

F[ab,c] =0 (13)
where

T = Zl?(F “Fl, — YFLF ),

AV = —8—1;(Fa1FbI SR *ib | spia, $FD

and & is a constant with units of (length). These equations
are derivable from a variational principle and are uniquely
characterized by various physically reasonable assump-
tions.? In addition, when k = 0, the above equations reduce
to the source-free Einstein—-Maxwell field equations.

A characteristic surface for the source-free generalized
Einstein—-Maxwell field equations is a hypersurface S across
which g;, g, ., and F; are continuous, but where there are
essential discontinuities in either the second derivatives of g,
or the first derivatives of F; or both. By the discontinuities
being “‘essential” we mean that they cannot be made to dis-
appear by transforming to another chart of the manifold.

It is well known that a characteristic surface for the
source-free Einstein-Maxwell field equations must be a null
hypersurface.’ Such hypersurfaces can also serve as charac-
teristic surfaces for the system of Eqgs. (1.1)—~(1.3). To see
this, let us consider the spacetime with metric and electro-
magnetic field given by*

ds* = L *(e*Pdx* + e~ *Ady*) — 2dudv (1.4
and

iF,dx° Ndx" = @ dx Ndu + ® dy Ndu,

where L = L (u), 8 = f(u), and @ = D (x,p,u). This
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spacetime will satisfy the source-free generalized Einstein—
Maxwell field equations provided

—L"L— (B')z =L -2(8—2ﬁ¢’12 + e2ﬁ¢,y2)
+kL XD, — D, P,) (1.5)
and
e o, +FD,, =0, (1.6)

with ': = d/du. If k > 0, then we cannot produce a nontrivial
solution to Egs. (1.5) and (1.6) which has

L"L" + (B} =0. (1.7)

However, if k <0, then we can construct such solutions® by
taking any solution to (1.7) and defining

@, =LfIm(C) and @, ,=Le “ReC),
where the complex valued function C is given by
C = Bexp[ LI 'exp(it) (e’x + ie ~Pp)]

with B and ¥ being arbitrary complex and real valued func-
tions of u resp., and — /? = k. Since the hypersurfaces

u = const are null hypersurfaces of the spacetime with met-
ric (1.4), we see that if we choose S to be of class C 2 every-
where, except along 4 = 0, where it is of class C'!, then when
k <0 we can find solutions to the source-free generalized
Einstein-Maxwell field equations which have null hypersur-
faces acting as characteristic surfaces.

The purpose of this paper is to argue that timelike and
spacelike hypersurfaces can also act as characteristic sur-
faces for the source-free generalized Einstein-Maxwell field
equations. Due to the intimate relationship between charac-
teristic hypersurfaces and ‘‘wave fronts,” this observation
leads one to suspect that in the generalized Einstein—Max-
well field theory it may be possible to propagate information
at speeds greater than light, more exactly, along paths with
spacelike tangent vector. If this were the case, then it could
be argued that the generalized Einstein~-Maxwell field the-
ory should be dismissed as being unphysical. However, it is
best to put off judgement on this issue until after examining
those conditions which may lead to ‘““acausal propagation.”
The general form of these conditions will be derived in the
next section, and in Sec. 3 particular cases will be
investigated.
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2. CONSTRAINT EQUATIONS AND THE
CHARACTERISTIC MATRIX

Let .S be a hypersurface in the four-dimensional mani-
fold M. We require S to be regular in the sense that the mani-
fold topology on S'is the same as its topology as a subset of M.
Thus § cannot come “arbitrarily close to itself.” If peS, then
there exists a chart x = (x°,x',x2,.x*) at p with domain U
which is such that in U, S is given by x° = 0. We assume that
inU

8y 8iis 8ijkes Fip Fija @1
are all continuous across S and that the only second order
derivatives of g;; and first order derivatives of F; which can
experience discontinuities across S are

.2)

We shall now determine those conditions which the func-
tions presented in (2.1) must satisfy on .S, : = SnUin order to
guarantee that some of the functions given in Eq. (2.2) can-
not be specified on S, through use of the field equations
(1.1)—(1.3). It is only when these conditions are satisfied that
800 and Fj;, can be discontinuous across the hypersurface

800 and F,-j‘o.

In order to simplify the form of the following expres-
sions, we shall let the symbol [C ] denote continuous quanti-
ties built from the functions presented in Eq. (2.1).

We begin our construction of the aforementioned con-
ditions with Eq. (1.3). This equation tells us that
Fopo=1[Clap (2.3)

and hence F,g, is continuous across S. Thus the only x°
derivative of F;; which may be discontinuous across S is
F 0,0

Since
-1 eabrs 6cdtu R
4g
where g: = det(g,,, ), we find that
* R *0aBy __ [C ]aﬂy

* R %abcd, __
R L rstu

*R *0a08 _ [C ]aB’
and (2.4)

*R kaBys _
28
Using Egs. (2.3) and (2.4), we discover that

GY —8m(TY 4+ kAY)

e.()ath Oyér

o0+ [C 17,

and
FOj;j + %kac;a*R *0abc

are built solely from the functions given in Eq. (2.1). Conse-

quently the six field equations
GY=8m(TY 4+ kA Y),
F% ;4 kF,. *R ** =0,
Fiapy =0

simply represent constraints upon the functions (2.1). We
shall now employ the nine remaining field equations in (1.1)
and (1.2) to derive a linear system of nine equations for g .5 o

25)
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and F, , in terms of the functions (2.1). The 9 X 9 matrix
appearing in this system of linear equations is called the
characteristic matrix for the source-free generalized Ein-
stein-Maxwell field equations. It will turn out that a solution
to Egs. (1.1)—(1.3) will have S as a characteristic surface if
and only if it yields a characteristic matrix which has a van-
ishing determinant on S.

A straightforward calculation involving Egs. (2.3) and
(2.4) shows that
ij;jz ("% — 878"V Fo, 0+ [C]7,
Fbc;a*R *yabc _ %Mﬂv.rgyvm +2*R *OYMOFO,u,O +[CY,
G = Gb w00 + (C1,

and

k
8m(T* + kAd*P) = 2—ng£§ 0 PrePeg o

— kM aﬂ'ﬂFou,o +[C1**

where
Mabr., — Elé(e%ﬁaeoﬁﬁ 4 OEBBOusay Fga;g (2.6)
and
G = g0 g + g — g g
a(,ugV)BgOO aﬂ Oug v+ g“Bg""g‘”}. (2.7)

Consequently, when (i, j) = (a¢,8) and i = yin Egs. (1.1) and
(1.2) respectively, we obtain the following system of linear
equations for g,,, o0 and Fy,, o

NbBuvg, oo+ kMPHE,, = [C ], (2.8)
kM “""’gm’oo + P”"F(,u‘0 = [C], 2.9)
where
N aPwv, — G abuv _ 21(- FF, e 150 (2.10)
4
and
Pyu: — g}/og.uo _ g?’,ugoo + k *R *07/“0, (21 1)

In order to reformulate Egs. (2.8) and (2.9) in matrix
language, we shall let capital Latin indices range from 1 to 6
and identify these indices with the index pairs v in accor-
dance with the following scheme:

L=(1), 2:=(12), 3:=(13),
4:=(22), 5:=(@3), 6=33).

In addition a tilde will be placed above any quantity using
capital Latin indices which has been built from a quantity
involving lower case Greek indices. Thus, e.g.,

N33 = N2, and M2 = M 22,
This notation permits us to rewrite Egs. (2.8) and (2.9) as
follows:

v kM‘A o c
(XA v (FU‘)Z) [ ] (2.12)
Ykeo? P (C] r
where
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ﬁ'l.l 2171.2 2}"\71,3 jv'u 2[\71.5 ﬁl.é
j\‘r'z.x 21'\72.2 2ﬁz.3 jv"z 4 21'\72,5 N"’z.e
(y'vl:=|"". )
17.6.1 2ﬁ6,2 21'\'7'5.3 fv'u 2]‘\76.5 Jv:e,s
2.13)
and
M 2ﬂ2,1 21‘73.1 M4 zﬁs.x Mst
[@V]): = M M M3 MY M M*?
A 13 Zﬂz.s zﬁs.a M3 zﬁs.s M3
2.19)

The 9 X 9 matrix appearing on the left-hand side of Eq. (2.12)
will be denoted by Q and is called the characteristic matrix
for the source-free generalized Einstein-Maxwell field equa-
tions. Due to Eqgs. (2.4), (2.6), (2.10), (2.11), (2.13), and
(2.14) it is clear that the coefficients of this matrix are built
only from the functions given in Eq. (2.1).

Since Egs. (2.3), (2.5), and (2.12) embody all of the re-
strictions imposed by the source-free generalized Einstein—
Maxwell field equations we see (as usual) that these equa-
tions do not suffice to determine all of the second derivatives
given in Eq. (2.2) on S (since g, oo does not appear in any of
these equations). This ambiguity can be removed by choos-
ing our original chart x at peS$ to be a Gaussian coordinate
system (see pp. 35-37 of Ref. 3). In terms of such a chart we
have S given by x° = 0in U with g, = e( = + 1) and
8ox0 = 0o0n U. As a result of using such coordinates,
8oa00 = 0, and thus we can employ Eq. (2.3) to deduce that
the only second derivatives which need to be determined on
S, are g.500 and Fy,, o. These derivatives will be uniquely
determined on S, by Eq. (2.12) provided that the character-
istic matrix Q is nonsingular on S, . Hence we can now con-
clude that a solution to the source-free generalized Einstein—
Maxwell field equations (in terms of the Gaussian coordi-
nates) will have S as a characteristic surface if and only if the
associated characteristic matrix is singular on S.

The problem of interpreting the condition detQ = 0 in
general appears to be quite intractible. Thus in the next sec-
tion we shall investigate various restrictions on the functions
presented in Eq. (2.1) which lead to a singular characteristic
matrix.

We shall now consider the effect that a coordinate
transformation of the form

P=x, 7 =xxF) (2.15)

has on the equation detQ = 0. To begin with, it is clear that
under (2.15), M aby NeBrv and P™ transform as 3-tensors;

eg.,
1_7 v _— por E Z;E [71_-,
where B?: = 3x7/3x°. This in turn implies that there exists
an invertible 6 X 6 matrix (X {,), which is such that
1‘\7"” — ﬁB,VXr,;X; g
and
= PR AB

T
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As a result of these facts
det(y*Y) = det(y?¥) (detX 4)?,
det(P™) = det(P°7)(detB )3,

and (2.16)
detQ = detQ (detX 7)*(detB 1)?,

where it can be shown that detX 4 = (detB 7)*. Consequent-
ly, detQ = 0 if and only if detQ = 0; with a similar remark
applying to det(y*Y) = 0 and det(P ") = 0. These obser-
vations will prove to be very useful in the next section. In
passing one should note that the constraint equations are
satisfied in the barred coordinate system if and only if they
are satisfied in the unbarred coordinate system.

The remainder of this section will be devoted to a brief
discussion of the Cauchy problem for the source-free gener-
alized Einstein—Maxwell field equations.

Let S be a hypersurface in a four-dimensional manifold
M and let x be a chart of M at peS with domain U which is
such that in U, S'is given by x° = 0. If we require that x be a
Gaussian normal coordinate system, then the Cauchy prob-
lem for the source-free generalized Einstein-Maxwell field
equations involves specifying the values of g5, 8,50, and F;;
on S, : = SnU, and then determining a solution to Egs.
(1.1)«(1.3) for g;; and F; on a neighborhood W of S, , which
agrees with the prescribed initial data, and is such that
8o = 0and gy, = + 1on W( — 1if Sis tobespacelike, + 1
if §'is to be timelike). Due to our work in this section we
know that the initial data on S, cannot be arbitrarily speci-
fied since it must satisfy the constraint equation (2.5)on S,,.
[Note that a knowledge of g;;, g, and F; on S serves to
determine all of the functions given in Eq. (2.1) on S.] If the
initial data has been chosen to satisfy this equation, and con-
sists of analytic functions of the x ®’s which are such that
detQ-4~0o0n §,,, then we shall show that the Cauchy problem
(in terms of Gaussian normal coordinates) can be solved
with g; and F;; being analytic functions of the x s, We begin
our proof of this fact with a few remarks concerning Egs.

(1.1)=(1.3).

Since the tensor field F¥,, + 1kF, *R *“* is identical-
ly divergence-free, it is easy to see that if we have a solution to

F% 4 kF, *R*** =0
and
Fioap) =0
for g; and F;, on a connected neighborhood WC U of S,
which is such that
FO+ JFye, R 5 =0
and
Flap, =0
on S, then Eqs. (1.2) and (1.3) are satisfied on® W.

It can be shown’ that the tensor field
GY — 87 (TY + kA Y) is divergence-free when Egs. (1.2) and
(1.3) are satisfied. Using this result, along with the above
observation concerning Eqgs. (1.2) and (1.3), we can prove
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the following proposition on the Cauchy problem for the
source-free generalized Einstein—Maxwell field equations.

Proposition 1: [f the initial data on S, has been chosen to
satisfy the constraint equation (2.5), and we have produced an
analytic solution to the equations

GP=87(TP 4+ kd*F),
FY 4+ 3kF, . *R *** =0,
Froap) =0,
in terms of Gaussian normal coordinates on a connected
neighborhood WC U of S, , which argees with the initial data,

then this solution is also a solution to the system of partial
differential equations (1.1)-(1.3) on W.

The similarity between Proposition 1 and the corre-
sponding result for the Einstein—-Maxwell field theory is re-
markable in view of the complexity of the generalized Ein-
stein-Maxwell field equations.

.17

Equation (2.17) represents a system of twelve equations
for the twelve unknown functions g5 and F;. Due to our
previous work we know that on .S, Eq. (2.17) can be solved
for g,500 and F;, provided that the characteristic matrix Q
is nonsingular. Thus we can now appeal to the Cauchy—
Kowalewsky theorem® to conclude that if we are given ana-
lytic initial data on S, , which is such that detQ=0 on .S, ,
then there exists an analytic solution to Eq. (2.17) for g,
and F;; on a connected neighborhood W of §,,. Upon com-
bining this result with Proposition 1 we obtain the following:

Proposition 2: If the initial data on S,, has been chosen to
satisfy the constraint equation (2.5), and consists of analytic
Sfunctions of the x s which are such that detQ~00n S, , then
on a connected neighborhood of S, there exists an analytic
solution to the source-free generalized Einstein-Maxwell
fleld equations, which agrees with the initial data, and has x
as a Gaussian normal coordinate system.

3. CHARACTERISTIC INITIAL DATA

In the Introduction we saw that null hypersurfaces can
serve as characteristic surfaces for the source-free general-
ized Einstein—-Maxwell field equations. The purpose of this
section is to present a fairly strong argument for the case that
timelike and spacelike hypersurfaces can also act as charac-
teristic surfaces for these field equations. To that end, let S be
an open subset of the hypersurface x° = 0 in R* where
x = (x%x',x%,x*)is the standard chart of R*. As initial data on
S for the source-free generalized Einstein—Maxwell field
equations we choose to specify g, 8,0, and F; as differentia-
ble functions on S with go = €( = + 1), g, = 0, and
8ouo = 0. This data will be called characteristic initial data
(in a Gaussian normal coordinate system) if it satisfies the
constraint equation (2.5) and yields a singular characteristic
matrix Q on S. (Note that when evaluating the constraint
equations the field equations Fi,, 5, = O are used to elimi-
nate terms involving F, 5, .) We shall show that it is possible
to present characteristic initial data on S and hence the
source-free generalized Einstein-Maxwell field equations
may admit spacelike and timelike characteristic surfaces.
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In order to determine the required characteristic initial
data, we note that if M 7 = 0 on S then the characteristic
matrix Q assumes the block form [cf. Eq. (2.12) and (2.14)]

Q:(X:)U POW). 3.1

In this case detQ = 0 if and only if either det( y “Y) = O or
det(P ) = 0. We shall now examine what conditions the
initial data must satisfy if det( y *Y) = 0.

Suppose that S is spacelike; i.e., g4o = — 1 0n.S. If peS,
then we can perform a coordinate transformation on the
form (2.15) to arrange that (g;) = diag( — 1,1,1,1) atp. A
lengthy calculation shows that at p

det(x'’) = ZH{1-24+D+F)+ 4>+ D>+ F?
—2B?—2C*—2E?+ 44D + 44F + 4DF) — 24D
+A%F+ AD?> + D*F + AF* + DF? — AB* — B*D — AC*?
— C*F—DE?— E*F _2B*F —2C?D — 24E* + 2BCE

+44DF)+ (B*+C'+E*+AD*+ A F*+ D*F* + 2B*C?

+2BE? 4+ 2C?E* —2B*F>—2C*D>— 24*E* — 24B*D
— 44AB*F — 4B*DF — 44C*D — 24C*F — 4C*DF
—4ADE* — 4AE*F — 2DE*F + 44 *DF + 44D *F
+ 44DF?* + 4ABCE + 4BCDE + 4BCEF) — 2(B*F
+ C*D+ AE* — AB*F* — B*DF* — AC*D*— C'D*F
— ADE? — A*E°F + B*C*D + B*C*F + AB*E>
+ B!E*F + C*DE* + AC*E?* + A*D*F + A*DF*
+ AD*F* — 24B*DF — 2AC*DF — 2ADE*F — 2B°CE
— 2BC*E — 2BCE"* + 24ABCDE + 24BCEF + 2BCDEF)
+ (B*F*+ C*D*+ AE* + 2B*C*DF + 24BE*F
+24C*DE?* — 24B°DF? — 24C?D*F — 24°DE*F
— 4B>CEF — 4BC°DE — 4ABCE"® + 4B*CE*
+ A*D?*F* 4+ 44BCDEF)), (3.2)
where

A:=kF F", B:=kF " C:=kF,F"

D: = kF,,F,", E:=kF,F, F.=kFF/'

Recall that if NV is a field of unit normals for a nonnull
hypersurface 2, then on X we can decompose F); as follows:

Fy= — €[2N,E) + (—8)"€,,N“B"], (3.3)
where
e=NN° E;=F,N’ B.= —*F,N° (3.4

The vectors £ ¢ and B“ are called the electric and magnetic

JSield vectors (on 2). F; is said to be pure electric ( pure mag-

netic resp.yon 2 if B = 0(E° =0, resp.). When 3 = S, we
choose N = 3/9x° restricted to S.

Using Egs. (2.16) and (3.2), it can be shown that if S is
spacelike then at p

det(y*")
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—— (1 —kB
32g“( B

L kEEY?
32g4(+ £

if F;; is pure magnetic on S,

if F; is pure electric on S.
(3.5)

Since Eq. (3.4) implies that £ “ and B are tangent to S
we see that when S is spacelike B °B, and E “E_, must be
nonnegative. Thus we can now use Eq. (3.5), along with the
fact that our choice of the point peS§ was arbitrary, to deduce
the following:

Lemma 1: If the initial data is such that

(YMP7=0o0nS;,

(i) S is spacelike; and

(¢ii) Either k > 0, and F; is pure magnetic with
1 =kB,B® ork <0, and F; zs pure electric with

—1=KkE_E°, then detQ =00n§.

When S is timelike we can choose our chart X at peS'so
that (2,) = diag(1,1,1, — 1) at p. In terms of this chart
det(y * U) has the same terms as those appearing in Eq. (3.2),
but many of the signs are changed. The end result of the
calculation is that when S is timelike then at p
U

)

det(y

3'—_;% (1 4+ kB,B°)* ifF, is pure magnetic on S,

—_— (1 — kEE%? if F; is pure electric on §.

32g“
In this case B “ and E“ can be either spacelike, timelike, or
null, and hence the vanishing det(y*") when F}; is pure
magnetic or pure electric places no restriction upon the sign
of k. Consequently, we have the following:

Lemma 2: If the initial data is such that

@OMP"=00nS;

(i) S is timelike; and

(iii) F;; is either pure magnetic with — 1= kB, B* or
pure electric with 1 = kE_E*° then detQ =0o0n S.

Lemmas 1 and 2 both require that M “5¥ = Qon S. It is

an elementary matter to prove the following two lemmas
concerning this condition.

Lemma 3: If S is nonnull and F,

where a vertical bar denotes covariant differentiation with
respect to the three-dimensional metric g,z on S given by
g-aﬂ F=8ap-
Lemma &: If S is nonnull and F; is pure electric on S,
with F; 70, then M%7 =0on S zfand only if
2.5 = AE_Eg where A is a differentiable function on S and
2,5 =
If F; is pure magnetic on S, and F,5|, =0, then the
vector ﬁeld B “ must be a parallel vector field of the pseudo-
Riemannian space V; = (5,8,5), and hence B “‘EHBW =0
Using this fact along with the fact that the Weyl tensor of a
V; vanishes identically, we can show that

— 28ap,0¢
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; is pure magnetic on S,
then M°%Y = 0and F 5., = Oon Szfandonlyzf wgly =0,

> R _ .
Rab’pv = —5— (ga,ugﬁv gavgﬂp) + 2B /l ( aB g/j‘y
—B.B 25 + B;B.8,, — BﬁBl, &) (3.6)

provided B*B,£0. In addition, since G *# 5 = 0, we must
have

B aRTla = O

Our work so far has shown us how to choose initial data
so that detQ = 0 on S. However, not all such initial data will
satisfy the constraint equation (2.5), which we shall now pro-
ceed to investigate.

If S is spacelike, and F; is pure magnetic on S with

F.g, =0, then the constramt equation (2.5) becomes
KF,; 2% *R *F% =0,

LJR+05-0500)

=B*B, + kFg, F’{“R *0B0r, G.7
2ty — o= KELF 80,
where
* R #0B0y :gOOG_ﬁY +nPn Y- pr v
+%g—ﬁ”(.{2 TR, —0N7.12°%) (3.8)

and lower case Greek indices have been raised and lowered
with 2 and &.p resp. When S'is spacelike, and F; is pure
electric with 2_; = AE_Ej, then Eq. (2.5) becomes

E®,+ kG-“ﬁEa,B =0,

iR = E°E 4 kG “°E E,,

2, —2,%,=0.

Thus the problem of producing characteristic initial
data on a spacelike hypersurface for the source-free general-
ized Einstein-Maxwell field equations has reduced to find-
ing solutions to either Eq. (3.7) or (3.9) which lead to
detQ = 01in the manner described in Lemma 1. Upon noting
Eq. (3.6) and the fact that when F; is pure magnetic
F.g, =0ifand only if B is parallel [which follows from
Eq. (3.3)), we get the following sets of characteristic initial
data.’

Set I: Characteristic initial data when S is spacelike and
k>0.

(i) F, is pure magnetic with | = kB, B¢,

3.9)

(i) £, issuch that ¥V, = (§,2,5) admits B “as a parallel
vector field and has constant scalar curvature R with
k* —1R>0; and

(iii) 2,5 = AZ,;, where A2 =k — iR.

Set IT: Characteristic initial data when S is spacelike and
k>0.

(i) F; is pure magnetic with | = kB, B*;

(1)) g5 is such that V; = (S,8,5) admits B * as a parallel
vector field and has constant scalar curvature R = 2% ; and

(iii) 2,5 = AB, By, where Ais an arbitrary differentia-
ble function on S.

Set III: Characteristic initial data when S is spacelike
and k <0.
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() F; ispureelectricwith — 1 = kE°E, and E “la=10;

(ii) g, is such that V; = (S.8,4p) is a space of constant
curvature'® with scalar curvature R = — 3%, and

(i) 2,5 =0.
We shall now turn our attention to the case in which Sis
timelike.

When S is timelike, and the electromagnetic field is
pure magnetic with 5|, = 0, then the constraint equation
(2.5) becomes

kFuﬂ 1 “Y*R *0B0y = 0,
— 3R - 02305+ 02305) =B"B, + kFy,F}*R *¥,
3.10)
A A v, T
12, 1A n Al = kF,uF A&:ﬂf -Qg o
where *R *%% ig defined by Eq. (3.8).
If §'is timelike, and F; is pure electric with
2,5 = AE_E, then Eq. (2.5) becomes
E® .+ kG*E,;=0,
— AR =E°E,+ kG°PE E,
N0, -2, ,=0 (3.11)
Upon combining Eqgs. (3.10) and (3.11) with Lemmas 2,

3, and 4, we obtain the following three sets of characteristic
initial data.

*Set IV: Characteristic initial data when S is timelike.

(i) F;; is pure magnetic with — 1 =kB,B¢;

(i) g, issuch that V', = (S,g,,5) admits B “ as a parallel
vector field and has constant scalar curvature R with
iR — k'>»0; and

(i) 2,5 = A5, where A * = 1R — k.

Set V. Characteristic initial data when S is timelike.

(i) F;; is pure magnetic with — 1= kB, B

(i) 8,5 is such that ¥, = (5,g,5) admits B “ as a parallel
vector field and has constant scalar curvature R = 2k *!'; and

(iti) 2,5 = AB, B, where A is any differentiable func-
tion on S.

Set VI. Characteristic initial data when S is timelike.

(i) F; is pure electric on S with 1 = kE, E“ and
E®,= 0;

(ii) £, is such that V, = (S,g,5) is a space of constant
curvature with scalar curvature R = — 3k'; and

(iii) 2,5 = 0.

At this time we note that there is only a slight difference
between the sets of characteristic initial data, I, I1, III and
IV, V, VI, resp. This similarity stems from the resemblance

between the “magnetic constraint equations” (3.7), (3.10)
and the “electric constraint equations™ (3.9), (3.11).

Thus far in our search for characteristic initial data we
have arranged for detQ to vanish by choosing M ¥ = 0 and
det(y *Y) = 0. Due to Eq. (3.1) we see that we can also get
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detQ = 0 by having M “#¥ = 0 and det(P ™) = 0. We shall
now explore this possibility.

When S is spacelike,
P =g __ k*R *00u

while if S is timelike,

P = —§7“~—k*R #07'0#’

where *R **7 i5 given by Eq. (3.8). Upon noting that
det(P™) = 0if and only if det(P)) = 0, and

6det(P}) = 8557 PAP4PY,

Auv

we can derive the following two additional sets of character-
istic initial data.

Set VII: Characteristic initial data when S is spacelike
and k <0.

(i) F; is pure magnetic;

(i) g, 1s such that V, = (§,8,5) admits B “ as a parallel
vector field and has constant scalar curvature R = 3k *'; and

(i) 2,5 = A5, Where A2 = — 2k ).

Set VIII. Characteristic initial data when S is timelike
and k> 0.

(i) F; is pure magnetic;

(ii) g5 issuch that V; = (5,85 ) admits B “ as a parallel
vector field and has constant scalar curvature R = 3k %; and

(iii)) 2,5 = A5, Where A > = (2k)™.

In concluding this section I would like to point out that
the characteristic initial data presented above by no means
exhausts the set of all possible characteristic initial data for
the source-free generalized Einstein-Maxwell field equa-
tions. However, it does show us that characteristic initial
data for these field equations can be prescribed on spacelike
and timelike hypersurfaces.

4. SUMMARY AND CONCLUSIONS

In this paper we have seen that null hypersurfaces can
act as characteristic surfaces for the source-free generalized
Einstein-Maxwell field equations. We have also seen that it
is possible to specify characteristic initial data on spacelike
and timelike hypersurfaces. The latter observation does not
imply that spacelike and timelike hypersurfaces can act as
characteristic surfaces, although it is indicative of this
possibility.

Previous work!! with the generalized Einstein-Maxwell
field equations suggests that the coupling constant k, which
has units of (length)?, must be small in magnitude. If we
assume that this is the case, then we find that for each of the
eight sets of characteristic initial data presented in the last
section some quantity of physical or geometrical significance
must be quite large. For example, we must have either in-
tense electromagnetic fields, or enormous curvature or a
rapidly varying metric. The fact that some guantity appears
to be “blowing up” in order to obtain characteristic initial
data on a spacelike or timelike hypersurface indicates that
characteristic surfaces may only occur under extreme condi-
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tions, during which a classical field theory may not actually
be viable. Since our present knowledge of such situations is
quite limited, I believe that we cannot dismiss the general-
ized Einstein—-Maxwell field theory on the grounds that it
admits characteristic initial data on spacelike or timelike hy-
persurfaces—unless we can produce more “‘reasonable”
characteristic data on such hypersurfaces.

In Sec. 2 we saw that for noncharacteristic, analytic
initial data, which satisfy the constraint equation (2.5) on a
spacelike or timelike initial hypersurface, there will always
exist an analytic solution to the source-free generalized Ein-
stein—-Maxwell field equations which is valid on a neighbor-
hood of the initial hypersurface and which agrees with the
initial data. When the initial data are characteristic, we are
not assured that such a solution will exist, even if the data are
analytic and satisfy the constraint equation. Thus in view of
the characteristic initial data presented in Sec. 3, and the
above discussion of it, we see that for intense gravitational
and electromagnetic fields the source-free generalized Ein-
stein-Maxwell field equations appear to lose their predictive
powers. Consequently, these field equations seem to forecast
the regime in which they are no longer useful for predicting
the future. This remarkable feature of the generalized Ein-
stein-Maxwell field theory can perhaps be interpreted as a
classical limit on the phenomenon to which this theory can
be applied, or perhaps it is indicative of something more
fundamental about the nature of matter.
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"My notational conventions are the same as those employed in C.W.
Misner, K.S. Thorne, and J.A. Wheeler, Gravitation (Freeman, San Fran-
cisco, 1973) with the following exceptions: (i) tensorial indices will be
denoted by lower case Latin letters, (ii) lower case Greek letters will as-
sume the values 1-3 and satisfy the summation convention, and (iii) the
permutation symbols will be denoted by € ***? and ¢,,,,,, with

€' =€y =1

*For a discussion of the origin and uniqueness of the generalized Einstein—
Maxwell field equations see: G.W. Horndeski, J. Math. Phys. 17, 1980
(1976); and G.W. Horndeski and J. Wainwright, Phys. Rev. D 16, 1691
(1977).

*See, e.g., p. 360—63 in J.L. Synge, Relativity, The General Theory (North-
Holland, Amsterdam, 1971).

‘For a more detailed discussion of the metric (1.4) see pp. 95760 of Ref. 1.

*This solution represents a special case of the solution described in Foot-
note 20 of G.W. Horndeski, **Null Electromagnetic Fields in the General-
ized Einstein-Maxwell Field Theory,” J. Math. Phys. 20, 726 (1979).

“The proof of this fact is virtually identical to the proof of the corresponding
result in the Einstein-Maxwell field theory (see pp. 361-62 of Ref. 3) and
does not require x to be a Gaussian normal coordinate system.

’An indirect proof of this claim can be given using Eq. (2.1) of the first
reference cited in Ref. 2.

*The form of the Cauchy—Kowalewsky theorem which we need can be
obtained by generalizing the formulation of this theorem presented on pp.
76-86 of F. John, Partial Differential Equations (Springer, New York,
1971).

°Recall that we always require our initial data to be such that g, = + 1,
8o = 0,and g, o = 0. Thus, in order to specify the remaining initial data,
all we need present is Fy;, £,5 and £2,,5.

?An n-dimensional pseudo-Riemannian space is said to be a space of con-
stant curvature if R,,., = [R /n(n — 1))(8. 8oy — 8adBs.), Where R is
constant.

"'See Sec. 4 of the second paper cited in Ref. 2.
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In this paper we extend the results of 2 to Gibbsian systems of particles and unbounded spins,
showing that under general conditions on the potential the local limit property is a consequence of
the integral property for these systems. We give some applications of this result to the problem of

the equivalence of the ensembles.

INTRODUCTION

In this work we find that under general conditions on
the potential it is possible to derive the local limit theorem
from the integral limit theorem for Gibbs random fields of
particles and for Gibbs random fields of infinite spins.

We consider a system of particles interacting through a
short-range pair potential; the proof consists in reducing the
problem to the finite spin case using a special technique.’ The
proof of the local limit theorem for a Gibbs random field of
particles has been derived directly by Halfina’ and by Minlos
and Halfina,’ who have used analytic properties of the ener-
gy and of the correlation functions. Our result is quite differ-
ent: Without assuming any analyticity we show that the lo-
cal central limit theorem is a direct consequence of the
integral one.

The case of infinite spins with a short-range pair inter-
action is easily reduced to the proof for the particles, using a
property of exponential weak dependence introduced by Do-
brushin,* explicitly exhibited in Ref. 5. Since the exponential
weak dependence implies the exponential decay of correla-
tions (see Appendix A) and Malyshev has shown that the
exponential decay implies the integral limit theorem,® this
result allows us to get sufficient conditions for the local limit
theorem for infinite spin systems. The result of Riauba’ is
more general than ours in the one-dimensional case, whereas
our simpler method works in any dimension.

From the local limit theorem we deduce the equiv-
alence of the Gibbs ensemble and the canonical ensemble for
spin systems and for particle systems. Our method differs
from that used by Halfina? because the use of the exponential
weak dependence makes the proof much simpler. Our work
also differs from the result of Georgii,* because we find a
method for checking the equivalence of the canonical ensem-
ble in concrete cases. The result of Georgii is more general
than ours, but since there is no method available for check-
ing that a canonical state is extremal, it is more difficult to
apply it to concrete models.

In Sec. 1, we give the definitions and the results. In Secs.
2 and 3 we give the proof of Theorems 1,2, and 3. In Sec. 4 we
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deal with the problem of the equivalence of ensembiles for the
systems we have considered in the previous sections. In Ap-
pendix A, as stated before, we show that the exponential
decay of correlations follows from the exponential weak de-
pendence for superstable infinite spin systems.

1. DEFINITIONS, HYPOTHESES, AND RESULTS
A. Particle system

Here we use the standard definitions of a Gibbsian sys-
tem of particles (see Ref. 9). We assume a pair interaction,
which is described by a translationally invariant potential
U:R “—( — o, + o] which satisfies the following
requirements:

(i) U is a continuous map into the extended real line;

(ii) For some R > 0, U (x) = 0 if |x| > R (finite range)
and for some

G>0and every xeR", U(x)> — G; (L.

(iii) U (x — y) is stable, i.e., for some B>0 and every
finite configuration s,

S Ux—y)> - Blsl,
X, yESs
xsky
where |s| denotes the cardinality of 5. Let u be the chemical
potential and s, 5 two configurations; we get

UG =43 Ux—D—plsl+ T UG- (13)
;¢)? Xes
The conditional Gibbs distribution in a bounded volume V'
with the condition s€S (R *\ V) is given by the density with
respect to the free measure A (ds)*:

Py(s|3) = Z(V|5) exp{ — BUGIS)},

(1.2)

(1.4)
Z(V|s) = L(V) exp{ — BU(s|9)}1 (ds),

where S (¥ )d is the disjoint union of all the sets of configura-
tions with a fixed number of particles:
SW)=Uz_S"™V),S™(V)I={s|S,|s| = m}], and S'is the
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family of all finite or countable subsets seR ¥ such that the
intersection snV is finite for every bounded subset ¥ of R".
The Gibbs random field associated to the particle systemis a
random field whose conditional distributions have densities
(1.4) for almost all the conditions s.

B. Infinite spin system (discrete values)

We first consider the case when the random variables
&,, teZ ¥ take integer values.

The interaction is defined by a finite range potential
(two-body) with range R, i.e., by a family of functions
U,,():Z XZ—(— o, + «]andby theselfinteraction po-
tential F;Z—( — o0, + o]

We suppose:

(1.5)
(i) if |& |<E8(Q2R + 1)7, |n|<c8Q2R + 1)*, 6> 1, then

U Em<R,, [FE)ILR,,

where ¢ is defined in Eq. (1.10).

The Gibbs random field for an infinite spin system is
defined as above,*° and the conditional probabilities in the
volume ¥ with boundary conditions &,, teZ "\ V are

gy €tV |EJZ\V)

(i) U, ,Vt,5,F, are translational invariant,

=2, \Erexp{ +AuY £~ FE)
—BY V. (£)-B z EnED). (1.6)
r:‘:.:/ se€Z® !V

C. Infinite spin system (continuous values)

Let us now give the conditions on the potential that we
need to formulate our result. The symbols and the defini-
tions of Sec. 1B will be used, taking into account that the
conditional probability (1.6) now becomes a density of con-
ditional probability with respect to the Lebesgue measure
IT"! \d&, and that all the variables in that formula take val-
ues in R'. Let us introduce the following symbols and
definitions:

P; (%) = Py, (x/¥led,),

A;=(leZ*/|l —s|eR }, y=(ynled)

1.7
+
C,= mad |PHx)|dx,
[711<p —
led, )
where P (x) = P (x |¥sl€A,) is the density of the condition-

al probability of the variable under the condition
Si=7p lEA,.

We suppose further that U, (&,£,), F (£,) satisfy all the
conditions of Sec. 1B and that they are differentiable with
respect to £,,£; in such a way that § * 2 |PZ(x)|dx exists for
every choice of the conditions y,/e4, and that there exist
constants a < 2,g > 0 such that Cu<gu *. It is easy to see that
these last two conditions hold, for example with @ = 1, when
the interaction is given by
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U Eub)=J(—95)6,E, J@)=0 if [t|>R,
FE)=A(at" + bE* + c£?) (1.7a)
with a > 0.

D. The exponential weak dependence

Following Refs. 4 and 11 we introduce the property of
exponential weak dependence for a Gibbs random fields as-
sociated to a spin system; an analogous definition holds for
the particle case. We make use of the following metric on the
space of measures (Vasershtein’s distance). Let £ and i be
two integer-valued random variables with distributions
P.(-),P,(-), respectively: We define the Vasershtein’s dis-
tance R(P,(-),P,()) between P,, P, by

R(P,P,) = 1%fz [l —m|P(I,m), (1.8)
where the inf is taken oyer all the joint probablllty distribu-
tions P(§,u) such that P(§ = nueZ) = P& = n), P(§GZ
pem) = P (u = m). This distance has been used by Dobru-
shin® in a more general frame than ours for studying the
problem of the uniqueness of the Gibbs random field, also
see Ref. 5.

Let V,, V.:€Z "%, |V\| < + o0, |V, | < + oo besuch that
V0V, = 0 and take the constant € > 0. We shall say that the
values of the field on V, are exponentially weakly dependent
of the values of the field on ¥, if there exist numbers ¢, 2V,
s.t. ,.,.€,<€ and for every V,C ¥, and P, every
x| x%ez, eV,

R (Py|x,teV, Py |xiteV))< ¥ € |x] — x7|

teV,

(1.9)

and €, <c,exp[ — ¢ d (¢,V))] for some fixed constants c,, ¢,
and d (¢,V,) and d (+,V) = min,._,.d (t,t').

E. The integral and the local central limit theorems

Here we use the same notations of Ref. 11. In all the
theorems that we prove in Secs. 2 and 3, we consider as a
Gibbsian sequence the sequence of the restrictions of the
Gibbs field to the space of the events related to the volume
V., and the Gibbs field chosen is supposed to be invariant
under translations. All the proofs also hold in the case when
we consider the sequence of conditional probabilities
P, (-/x,.) of the spins in the volume V provided that one
chooses the boundary conditions X, in such a way that for
some ¢, the expectation of 2, |£,| with respect to P, (-x,)
satisfies the inequality

Ek(z |§,|)<E|Vk|-

eV,

(1.10)

Thus ¢ (the constant introduced in Sec. 1B) is the con-
stant for which (1.10) is verified, or, in the case of the transla-
tionally invariant Gibbs random field, &, is defined by
¢ = E |&|. In the case of particles (1.10) must be substituted
by

E(S,)<em(Vy), (1.109
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where S, =5, nV,. Let { S, } be asequence of random var-
iables such that S, is measurable with respect to the o-alge-
bra of the events in the volume ¥, . We shall say that this
sequence satisfies the integral central limit theorem if

(@ D(S,)=D|V,]|,
B)D>0,

() Pr{S,<x} —
k— oo 277_

where D denotes the dispersion

Dé = J[§ () — E€ (0)fdP (0)
and

S, = (S, — ES)/V Ds, .

In the particle case one has to substitute |V, | with ¥
(volume of V).

X
[[ema

0

In the case of lattice distributed random variables,” 2
the local limit theorem is defined in the following way: Set-
ting P, (p) = P,{S, =p}, z = (p — ES,)/(DS,)"* we say
that the Gibbsian sequence {.S, } satisfies the local central
limit theorem if (), (8 ) are verified and

sup| V' DS, P,(p) — ——exp[ — 3%7]| — 0.
P 2n koo
(1.11)
In the particle case we shall take S, = |snV |, in the infinite
spin case ) = Z,. §,. When the spin is continuous it is nec-
essary to introduce the density of conditional probability
and the density of probability of S;:Pr{S,e4 | = P, (x)dx,
where A is a Borel subset of the real numbers and dx the
Lebesgue measure. Thus the condition (1.11) becomes

e (x*/2)

\/277
F. Equivalence of the ensembles
We use definitions analogous to those used in Ref. 11.
In this part of the work we deal with systems of spins which

take values in Z. The other systems can be treated easily
using the same methods developed here.

(1.12)

— 0.
koo

sup | P, (x) —

Gibbs ensemble: In the volume V', the probability mea-
sure P, , belonging to a certain Gibbsian sequence, where u
indicates the chemical potential, is called the Gibbs ensem-
ble. We indicate with P, , (£,t€V") the restriction of P, , on
the space Z“, ueV, . We denote the mean and the variance of
the random variable X with respect to the measure P, , by
E, X, D, X

Canonical ensemble: We shall say that the probability
measure on Z ** denoted by g v, (-) is the canonical ensem-
bleif g, (-) is given by

qnv,EpteV =P, (E 1€V /S, =N), (1.13)
where Sy = 2 £, and P, (:|S, = N) is the conditional

distribution obtained by P,,, with the conditionS, = N, and
N is some integer such that P, , (S, = N)+0.
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We call a Gibbsian canonical sequence a sequence of
canonical ensembles generated by a Gibbsian sequence and
by a sequence of integers.

Equivalence between Gibbs ensemble and canonical en-
semble: Let us take a Gibbsian sequence {S, }. Let N, be a
sequence of integers such that lim, __N,/|V,| =p.(pisthe
density in the canonical ensemble.) We say the equivalence
between the Gibbs ensemble and the canonical ensemble
holds, for the given Gibbsian sequence, if, for every U,
|U| < + o and for every £,

|Pm(§t,t€U) - qu,Vk@r’tEU)|k_’ 0,

where p¢ is such that E, S, = N,.

(1.14)

G. Results

Using the previous definitions we now formulate the
theorems contained in this paper.

Theorem 1: Let the hypotheses of (1.1) on the potential
be verified. If { S, } verifies the integral central limit theorem
for a certain Gibbsian sequence, then it also verifies the local
limit theorem for the same Gibbsian sequence.

The case of infinite spins with discrete values can be
proved in an analogous way, when the hypothesis of the fol-
lowing lemma are verified.

Lemma 1: If the property of exponential weak depen-
dence is verified by the Gibbs random field defined in (1.2),
then for some ¢ > 0

eV,

We need this additional hypothesis in the case of infinite
spins because we have to evaluate the probability that a cer-
tain fraction of the random variables in a volume ¥, has
absolute value bigger than a fixed constant. In the particle
case (1.15) is satisfied by condition (a) of the integral central
limit theorem. Thus we obtain the following theorem for
infinite discrete spins:

(1.15)

Theorem 2: If the exponential weak dependence is valid
for the Gibbs random field {£, } satisfying the hypotheses in
(1.2) and the sequence {.S, | satisfies the integral central limit
theorem for a certain Gibbsian sequence, then it satisfies the
local central limit theorem for the same Gibbsian sequence.

In the case of the Gibbs random field of particles, it is
possible to derive (@) and (¥) defined in (1.4) using the analy-
ticity property of the partition functions as a function of the
chemical potential, while (3 ) can be deduced from the strong
convexity of the pressure. Thus we introduce the integral
and the local limit theorem in the analyticity region for a
Gibbs random field of particles. Let us formulate here the
result concerning the connection between exponential weak
dependence and the exponential decay of correlations.

Lemma 2: Let the Gibbs random field (Sec. 1B) satisfy
the exponential weak dependence and suppose that the su-
perstability property is satisfied.'™!> Then for every
T,Tl"|T\| < + o, |T:l < + o, TinT; = B we have
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(e P F(ge) o

where the constants e,, e, depend only on |T,UT3| and

d(T,T,) = min dist(f,1,).

€T, t,eT,
The proof of Lemma 2 can be extended also to the spin
system with continuous values. Also theorem 2 can be ex-
tended to this case.

Theorem 3: Let us consider a Gibbs random field of
spins satisfying the hypothesis in Sec. 1C. Then if the se-
quence {.S, ] satisfies the integral central limit theorem for a
Gibbsian sequence and the property of exponential weak de-
pendence is verified, then it satisfies also the local central
limit theorem for the same Gibbsian sequence.

Theorems 2 and 3 together with Lemma 2 furnish suffi-
cient conditions in order to obtain the integral and the local
limit theorem. Let us consider, for example, the Gibbsian
sequence defined by the restriction of the Gibbs random field
(Sec. 1C) to a sequence of volumes { ¥, }. Let us take the
Gibbs field corresponding to potential (1.72) which satisfies
the superstability property. Then it can be shown® that the
exponential weak dependence is satisfied at large tempera-
tures and applying Lemma 2, we obtain the exponential de-
cay of correlations. From the last property, applying the
methods used in Ref. 6, we obtain the integral central limit
theorem for the choosen Gibbsian sequence. Then from
Theorem 3 the local theorem is proven. From these three
theorems we can derive the equivalence between the Gibbs
ensemble and the canonical ensemble. We consider only the
case of spin systems with integer values, the other cases can
be treated in an analogous way. We first take a Gibbsian
sequence P, , and then construct the canonical Gibbsian se-
quence (Gy,_,,,V,) as in Sec. 1F. Then we have:

Theorem 4: If the Gibbsian sequence { P, , | satisfies
(1.10) and the integral central limit theorem, if the potential
satisfies conditions (1.2), if the exponential weak depen-
dence holds, then the equivalence between canonical and
Gibbs ensemble holds for {P, , }. First we prove the
proposition:

Proposition 1: If for the Gibbsian sequence { P, ; |, the
integral central limit theorem holds, and if the exponential
weak dependence is verified, then V Q, |Q| < + », Y &,,

teQ)

P(SVJ '_Eﬂyks'ﬁ
VDy,|

z e w/2
<z)l§,teQ—->f —du,

- \/217'
where D is defined in («), Sec. 1E. Theorem 4 follows from
Proposition 1 and Theorem 2 by standard arguments.

(1.16)

2. PROOF OF THEOREM 1

The probability P, {p) = P,{S, = p} can be expressed
by means of the inversion formula for the characteristic
function
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1 + 7V DS, = )
f E(™)e = "r,

O
k

We use the same subdivision of Ref. 11. Therefore, the prob-
lem reduces to showing the following: Given € > O there are
two constants 4 and y, such that for & large enough the
integrals:

2.1

— VDS,

f |E (exp(irS,))|dr, (2.2a)
ALt |<yV DS,

[ iEexpurSlar
vV DS, <|t|<7nVDS,

are less than €.

(2.2b)

Let us consider (2.2a). It follows from the continuity of
U that for some R, >0, R, <R,, U(x) <G for x> R,. Let’s
now put R = max(R,,3R,). We consider a pavement & of
R  made up of open cubes with side 3R, a subpavement £ of
7 made up of open cubes with side R, and let’s denote with
2, the set of all cubes of 2 that lie at the center of a cube of
7

We put
We= v P Z;=V \W,
Per
@3

n, =4#Pe?, PCV,).

The event that some particle lies on the boundaries of
the cubes has probability O with respect to every Gibbs ran-
dom measure, so that we will neglect it in the following
considerations.

We have

S =Sw, + 5. (2.4)

Now since S, satisfies the integral theorem and in par-
ticular the property a, it follows from Chebychev’s inequal-
ity and (1.10)’ that for an arbitrary 5 >0

>3 S S
P(—A—C—'f‘—i >CR" + 7})<P( L

¥n,

>ZR°+ 7;)< 2 s
n

v
3nk k

where Q is some positive constant.

Let us fix two constants 8, 8 such that § > 3" and
37">8'>6" and define M = 5(CR " + ) and y,, the indi-
cator of the half-plane [M, + «). Itis easy to verify that the
event

&= 3 xm(Ss)>8 2.6)
3 nk AcD
ACW,
is contained in the event
1 _
B, = . Z S,>CR"® + 9], 2.7
3 Ny dew
ACW,
so that it follows from (2.5) that
P(A )< —Q— 2.8
ny

The event 7, can be decomposed as the union of a family
{or} of mutually disjoint events, where F ranges over the
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sets of cubes of & contained in W, such that #(F)<&'3'n,
and

o= N(S;2M) n  (S,<M). 2.9)
AeF ACW,\F
We can write
|E (exp(irS,))| < |E (exp(irS, | . ) |P ()
+ Y EEonlP(op). (2.10)

FCW,
#H(F)<b'3'n,

Let us condition the variables S, Ac 2 "W, with a con-
figuration SC ¥, \ 2, and some event 0. The finite range
of the potential implies that these conditioned variables are
independent and the characteristic function of their sum fac-
torizes. We also observe that if #(F) < 6'3°n,, there are at
least n, (1 — §°3 ") cubes 4 in £ F such that the neighbor-
ing cubes of 4 also belong to F.

We have

|E(e™|o)| = ’E(E [e"p[”]( > Vs )

(' SVA\Q]) ]l )
Xexpl it oS | of
VDs,

We can majorize (2.11) by taking the modulus inside the first
expectation and, since the second factor in the expression
(2.11)is a function of the conditions, we obtain that (2.11) is

k )

E( I e [exp(iT
ACTWn2,

n{ ud’ OF
A'eD/:D,
d(4,4") =0

and (2.12) is bounded by

for{rctn

DS,

. @2.11)

Op .8

(2.12)

n (1 —837)

(2.13)

[ sup
sCud’
d(A',4)=0
AP N7,

|4 |<3'M

where 4 is any element of £ ,.

We make a Taylor’s expansion around O:

' E (exp—lT—(SA |s,SA<M))

vV Ds,

t? 5‘5, t?
+0 ,
DS, ° (DSk>

where D is the conditional variance.

=1-

(2.14)

It is easy to see that

DS,>imin[P(S, = 0|5,S,<M),P(S, = 115,S,<M))
(2.15)

and a standard computation shows that our conditions on
the potential give to the probabilities on the right-hand side
of (2.15) the bounds:
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P(S, =0|s, S, <M)

>exp[ — R "exp(B, + BB /2 + 3'BGM)},
P(S, = 1|5,S,<M)

>(R /3)’exp( — BG 3°M + uB

— R exp|Bu + BB /2 + 3'BGM),
if |s]<3"M.
Since the expectation (2.14) is computed with the condition
S, <M, the conditional third moment is uniformly bounded

and the quantity can be bounded by an infinitesimal term
independent from the conditions.

From (2.14), (2.15), and (2.16) it follows that there are
two numbers > 0 and y > 0 such that (2.14) is bounded by

(2.16)

a

exp| — 72 for |7|<yV DS, . 2.17
P( DS, ) I7I<x K (2.17)
Taking account of the estimates (2.12) and (2.17) and of the

formula (2.13) we obtain that for a suitable constant ¢ > 0,
|Ee™)|<exp( — cr) + @ /ny,
and for A4 and k large enough

j __ |l‘:(€’irs_k)|dT<J‘°c exp{ — cr?}dr
A A

<|ri<yV DS,

+ 7r,y\/ DS, —Q—ge.
an

The second integral of (2.2) can be bounded without difficul-
ty by means of the same method and of the estimate of Ref.
11.

3. PROOFS OF THEOREMS 2 AND 3

In the case of infinite spins with discrete values we need
only to prove Lemma 1, since the proof of Theorem 2 is
completely analogous to that of Theorem 1.

A. Proof of Lemma 1
We have

Ds,, =E(z (&1 —E |§,|>)2
>

tseV;

~ il 1P & =mPE = 1)
<T S IIPE =l>[ S |mPE, = m/&, =1

e.m

—mP (¢, =m)]. &R))
Now
S (mlPE =m/E,=1)— |m|P &, =m)]|
S PE=nY mPE=m/E=1])
- |m|P(E,=m/5,=n)|. 3.2)

and we can majorize the expression under the modulus with
the Vasershtein distance using the inequality
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S 1= m| Blmy>3 ||| — im| [P ,m)

S| S P - S imipm|, 63

valid for any two random variables with joint distribution
P (I,m). Using the inequalities (3.1), (3.2), and (3.3) and con-
dition (1.8) of Vasershtein’s distance we obtain

> SUPE=DTPE=K)

nseV,
R (P)tl('|§s = l),P“ }('Igs = k))<q|Vk|

Since we are using the definition of the Gibbsian sequence
given in Sec. 1E, Q.E.D.

We give now a sketch of the proof of Theorem 3.

DS, <

Proof of Theorem 3: In the case of infinite continuous
spins the integral which expresses the density P, (x) of S, in
terms of its characteristic function extends to the whole line,

+ w0 = .
P(x) = l_f E(€™)e—dy,
\/217 o
We use the same method of Theorem 1 and of Ref. 11 but we
add a new integral to the subdivision, so that we have to
estimate the following integrals:

f _E(™)|dr, f |E ("™)\dr,
<|r1<yV DS, YV DS, <|7|<pVDS,

f |EE™)dr,
r2pV DS,

where the constants 4, y, p can be suitably chosen. The first
integral can be estimated in the same way as in Theorem 1.
For the second integral we use the estimate

v )
V Ds,

for the characteristic function of the central spin of a cube

with conditions y;, such that |¥,|<M V i (see Ref. 14). We

therefore obtain with the method of ““‘good” and “bad” cubes
the estimate

(34

3.5)

<e= % |rl>yV DS, (3.6)

f |E (™) |dr<(p — p)V DS,
YV DS, <|7|<pVDS,

% ( Q 4o~ 5'))‘
Vi
For what concerns the third integral we divide the domain of
the integration into intervals of equal length

= [pV DS, +(n—1)pV DS, +n).Ineach of this
intervals we apply the method of “good”” and “bad” cubes,
but the events &/ {” vary with n,

s )E[—l-— ZX,(">>5']

1

3.7

where

(ny

i

[1, if |&1>M,
O’ lf |§1'<Mn ’

where the constant M, = ¢ + #,, will be chosen later. For the
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characteristic function of the central spin of a cube we use
the estimate

ol

where P'(x) is the density of a random variable and f(¢ ) is its
characteristic function. Using the last remark and the hy-
pothesis in Sec. 1G on the potential we obtain:

P'()|d|x

t i8S, 1 % < 1
f __|EC(e S)|a’r<\/——D3 Y —

PV DS, ‘Vl\l nz]"]f,

P a n, (1 )

—-{—-\/DV,‘ z ( Bnn ) ,
n=1 P+’1—1

which, with the choice u,, == (p + n — 1)'/? * 4, with
0 <A <(1 —a/2)a™" and p sufficiently large, can be easily
shown to be less of any € for k > & (¢€). Q.E.D.

4. EQUIVALENCE OF ENSEMBLES
A. Proof of Proposition 1

Without losing generality we suppose than the length of
the side of V. is 2k. We consider a sequence of cubes { D, |
with equal centers and sides 2[(¥,)'/?]. It is easy to see then
that it is sufficient to consider the asymptotic behavior of the
conditional distribution of

> G —E, &)

Sy, =
\/D[V | W

.1

where W, = V, |D,, since it is equal to that of S, v,- Now the
distance of the set Q from W, tendsto «, as k goes to oo and
it is straightforward to see that the Vasershtein distance be-
tween the unconditional and the conditional distribution of
£, w, is majorized for & big enough by the Vasershtein distance
between the corresponding distributions of the set of the

&, teW . Since the convergence w.r.t. Vasershtein distance
implies weak convergence, (1.16) is true.

APPENDIX A

Proof of the Lemma 2: Let us consider the expression

=(JLe) —£(0e )5 (1) | (a1
we can majorize it by
e ( 2% &ar)
><( !!Inéxu@,)dP)’ + ,% U FAD)
1 g+ ][ v
X [llré n(ﬁ)} dap ] (A2)

where M is a constant that will be suitably chosen later and
X, (%) is the indicator of the interval [ — M,M ]. The first

Campanino, Del Grosso, and Tirozzi 1757



term in (A2) is proportional to

‘ f dP (£ teT,)dP (uteT),)

X [II EX(E)AP EET)|EpteT)

1eT,

— [Txu& NP & eeT, I,u,,teTz)]

teT

. (A3)

We can evaluate this expression in terms of Vasershtein’s
distances by considering a joint probability distribution for
&, and £ | for teT with the prescribed marginal distributions
P& el /& teTy) and P (€ |, teT,/u2eT’) and majoring the
difference of the products with the difference of two factors
times M |71/ = !, There are new terms arising when only one
factor is greater than M, but these terms are easily evaluated
by means of the superstability inequality

P(E>x)<e "8, (Ad)
In this way we obtain for (A3) the following majorization:
F|T2|M | T + {T,\(Clef C,d(T,,T,)) _+_ |T||M|T,l + \Tz\e —ula + b,
(A5)
where Fis a constant.

For what concerns the remaining terms of (2.15), their
number is 2 "7/ — 1 and each of them can be easily bound-
ed by means of (A4) and of the Schwartz’s inequality. They
can be bounded by

2(2\T,uT;{ _ I)M T|uT:e—aM2+b. (A6)
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Choosing M = d (7,,T,) and using (AS5) and (A6), we
prove the desired result.

It is clear that the proof of Lemma 2 applies with the
obvious changes to the case of continuous spins.
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The recursion relations obtained by applying the renormalization group technique to a finite one-
dimensional Ising chain with nearest-neighbor interaction and constant external magnetic field

are decoupled and solved in closed form.

1. INTRODUCTION

It is fairly evident that knowledge of a renormalization
group transformation ' for a finite spin system gives, in
principle, a method for calculating the partition function of
the system by recursion. The method is as follows. Write the
partition function for a system of N spins as

Z = ZU(A f)])’---»A })k );N)’ (1)

where U depends on the k constants 4 E)”, {=1,...,k, some of
which may be zero. The summation is over all spins
S;=+1,i=1.,NS8y,, =S, which have not been ex-
plicitly indicated in (1). Assume, for definiteness, that the
renormalization group (hereafter abbreviated RG) transfor-
mation consists of summing over every other spin. Applying
it # times, we obtain

Z=3SUAD,...ALN/2Y, ()

where the functional form of U does not change at any step;
only the constants 4 ¢’ do. If nis large enough, i.e., if ¥ /2 "is
small enough, then the summation over the few remaining
spins in (2) can be carried out directly. Thus, if one has ex-
plicit expressions for the constants 4 {",....4 7 in terms of
the quantities 4 {,...,4 {**, the problem is solved.

Recursion relations for the 4 !, | in terms of the 4 ),
! =1,2,...,k, are provided by the RG transformations. These
relations are coupled and highly nonlinear, and there appear
to be no general methods for solving such equations in closed
Jorm. It may therefore be that such equations are worth
studying per se.

In the present note we shall report on the strictly techni-
cal problem of the exact solution of the recursion relations
which arise in one-dimensional Ising models with nearest-
neighbor interaction and constant external magnetic field.
The resolution of these equations, which were obtained by
Nelson and Fisher, ' depends on the exploitation of their
symmetries to decouple them.

2. THE SOLUTION PROCEDURE

The recursion relations under consideration (see Ap-
pendix A) are

F,oy=@FL,+D)F,+L)F, 'L, +D"% (3)
L, y=L(FL,+DF,+L)" " (3b)
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0, /@, =[FL,+ DL (L, +1)
XL 7'+ F - H"" (3c)

These equations are not as formidable as they look. First,
observethat F, . ;and L, _ , areuniquely determined by F,
and L. Furthermore, their determination does not involve
the function Q,. We may therefore concentrate on Egs. (3a)
and (3b). We first set

a" = (F‘ll/ll”)l/2 (4)
[ =exp(2K, — B,), see Appendix A],
B,=(F,L)"? [=expK,+ B,), see Appendix A].

These substitutions bring (3a) and (3b) to the symmetric
forms

a”+l :(alz'+ 1)(al1 +BN)V 1!

Bn+ 1= (ﬁi + 1)(an +ﬁn) N I‘

There is no sign ambiguity in extracting square roots, as all
exponentials are positive. Now observe that

Bn+ 1~ &y :[),n_anzi (Say)’ (6)
which is independent of »; the symmetry of (5) means that

there remains only one recursion relation to solve. Now
define

(5

{P=144174, )

a,=66,—A/2. (8a)
Then

B,=856,+4/2, (8b)
and from (5) one obtains the recursion relation for §,:

8, 1=+ 1)/26,. 9)

This equation may be solved by an “N /D procedure.”
Set

6" = Pn/'D"’ (10)

where P, and D, have no common divisors. Then (9)
becomes

P,,, PYD 41 P24D}
D,.. 2P/D,  2PD,

whence, by the hypotheses on P, and D,,
P, =P,+D; D, =2PD, an

These equations are finally decoupled by the substitutions
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G, =P, +D, H,=P,—D,. (12)
With these substitutions, Eqgs. (11) become >

G,,,=G, H, =H (13)
which have the unique solutions

G,=G¢, H,=H{ (149
3. CONCLUSION

It is now a matter of substituting backwards to obtain
explicit expressions for F, and L,, and then for the right-
hand side of Eq. (3¢). Some computation is required to as-
semble the known final result on the one-dimensional Ising
model. * This is briefly indicated in Appendix B. More com-
plicated systems of coupled nonlinear recursion relations are
currently under study.

APPENDIX A

Equations (3) are obtained for a linear chain of N spins,
N = 2™+ The partition function is

N N
> exp(A0+K0 S 5,841 + By zsi), (A1)
S, = +1 i=1 i=1

i=1,N
with Sy, ; = S,. In the above 4, = 0 and has been written
in for symmetry. We write this as

Z =

Z= ZU(A(),KO,B(,;S[,N), (A2)
where the spins S, have also been indicated explicitly. The
summation extends over all spin variables S;, and for typo-
graphic convenience we have suppressed the range of sum-
mation. The RG transformation consists of summing over
alternate spins. After each such transformation, the surviv-
ing spins are renumbered serially from L to N /2" =N, .
Here m denotes the number of iterations, or the number of
times the RG transformation has been performed. After n

iterations we obtain

Z = EU(A”,K”,B”;Si,N”). (A3)

To write the recursion relations for A4,K,, and B, in “alge-
braic” form we introduce the notations

F,=expdK,, L,=exp2B,, Q,=expd,. (A4d)

Equations (3) follow immediately. The latter are the same as
Eqgs. (3.10)-(3.12) of Nelson and Fisher, ! who solved them
numerically for the infinite case. Their notations are related
to our by

x '=F,

n

y 1 = Bn’ w Y = Qn’ (AS)

and they denote the quantities indexed by #n + 1 by primes.
Observe that all quantities are positive.
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APPENDIX B

Suppose that we start with N = 2 ¥+ 1 spins. Then the
RG tranformation can be applied exactly M times. After M
iterations, we shall obtain

z- 3

S8, = + 1
+ By (S, + ).
Summation over the two surviving spins yield
Z=28y, expdp 1 —Kp 1) (B1)
The quantities 4,, , |,B,, , ;, and K, , , are determined by
the same recursion relations (3), in the notations (A4), al-
though the RG transformation cannot be iterated the
M + 1th time.
In order to obtain the partition function in the desired
form, we use (10), (12), and (14) to obtain

5 = Got D™+ (8, — D™

exp[4y + K,(S15; + 5,51

n N N, ’ (Bz)
G+ 1" — G-
where we have used D, = 1, and §, is given by
8, = exp(2K) cosh(B)¢ — 1. (B3)

Using (A4), (3),and A =8, — a; = exp(2K + B)
— exp(2K — B) we obtain for the term exp 4,,, | in (B1)
the expression

1/4 1/4
Ay P ryd

xpdy .y = () 2N
+ (ao BO)N/4

X 8pOhy _ 1052 (B4)

Multiplying and dividing by 6,,_, , and using (10) and (11)
we have

P
e YT v v (B
Inserting (B4) and (B5) into (B1) we obtain
Z=2%"P,,  /exp(NK)=AN +A%, (B6)
where
A, = X [coshB + (cosh’B — 2exp( — 2K )sinh2K )'/*],

which is the known result.

'D.R. Nelson and M.E. Fisher, Ann. Phys. 91, 226 (1975). This article gives
a relevant review of the RG formalism.

?For an early general review of Ising models, see G.F. Newell and E.-W.
Montroll, Rev. Mod. Phys. 25, 353 (1953).

’It may be of some interest to note that the same questions are finally ob-
tained in the much simpler case of no external field; A. Rabinovitch and
R.N. Sen, Ann. Israel Phys. Soc. 2, (2), 428 (1978); Proceedings of
STATPHYS 13 (Adam Hilger and Isreal Physical society).

‘K. Huang, Statistical Mechanics (Wiley, New York, 1967).
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An exact representation is obtained for the propagator of two ‘“‘hard spheres” on a one-
dimensional (uniform) lattice where only nearest-neighbor hops are considered. The
problem is solved within a random-walk formulation, with a general expression for the
nth moment of the spectral density being given. These formal results are then applied to
the discussion of several physical applications in a unified manner. In particular, we
show that within the framework of the Hubbard Hamiltonian one may obtain, from the
appropriate generalized spectral density, the optical absorption spectrum of a strongly
correlated one-dimensional band of electrons. This theory, as applied, for example, to
magnetic insulators or to the TCNQ (tetra-cyanoquinodimethane) salts, predicts a
logarithmic divergence of the optical spectrum, for which a novel interpretation is given
here in terms of an equivalent ‘“‘surface” problem, shown to be isomorphic to the one
studied. This is the problem of a two-dimensional rectangular crystal which has been
cleaved along a main-diagonal line “‘surface.” From this, we also indicate the effects of
chain dimerization (or Peierls transition) in a simple case of the spectral density. A
simple counter example is also given which shows the nonuniqueness of the moment-
method reconstruction for functions of unbounded variation. The partition function is
also obtained analytically, and from this follows the energy of the two holes one-
dimensional spinless fermion band. Finally, a physical argument is presented which
supports the spinless fermion prediction of infinite mobility (or d.c. conductivity) for the

hard spheres.

1. INTRODUCTION

Recently,' there has been renewed interest in the prop-
erties of a collection of particles or hard spheres that move on
a one-dimensional lattice by nearest-neighbor hopping. Such
systems have been usually studied either by mean-field the-
ories or by computer simulations and phenomenological
equations. The use of moment?- expansions seems to be rath-
er new' in the study of such problems. Hence, it seems worth-
while as a first step towards an exact treatment of such sys-
tems, by infinite moment expansions, to present a solution
for a simple two hard-sphere situation on a uniform chain.
An exact, closed form representation of the propagator on
the uniform chain is obtained in this case, and shown to have
useful physical applications. The treatment of “excitonic”
effects (longer range interaction) between the hard spheres,
and of a dimerized chain, will be the subject of another work,
although a very simple case of the latter one is also given
here.

The plan of this paper is then as follows: In Sec. 2 the
moments of the spectral density of the propagator are calcu-
lated by a random-walk technique applied to the rwo hard
spheres; we then introduce in Sec. 3 an integral representa-
tion that allows here an exact summation of the moment

“Supported in part by the Venezuelan Government Agency Consejo Na-

cional de Investigaciones Cientificas y Tecnolégicas CONICIT-Project No.

51-26-81-939.
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series. Finally, in Sec. 4 several physically interesting appli-
cations of our results are discussed in a unified manner.
Physically, in these presented applications, the hard spheres
can be either electrons, holes, or spinless sites formed by two
paired (up spin and down spin) electrons. To conclude, in
Appendix C a continued fraction representation is given for
a very simple case of the dimerized chain.

2. MOMENTS OF THE SPECTRAL DENSITY

We consider the propagator or resolvent

G@=—-"" (M
of the Hamiltonian 7. This last one will be taken to describe
hopping only by nearest neighbors of the two hard spheres.
Because of this there is no spatial reordering of the spheres in
one dimension. The asymptotic expansion of (1) is then writ-
ten as’

co=20 B By @

z z ¥4

where u,, = ™. To calculate the u1,’s, or moments, we shall
choose a basis set ¥ ( p,g) in the position representation, such
that ¥ ( p,g)= | p,g> represents a state vector with a sphere
on the lattice point p and with the other onsite ¢; we set p < q.
The state ¥ ( p,p) is projected out because of the hard-core

interaction between the spheres. The general matrix element
of (1) is then
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(r g1 pg)

zn+l

(P a1G@D|pg)= 3

n=0

3

Toevaluate { p',¢' | #™| p,q) we proceed as follows. One has
as definition

(p'\q'| 7| pa) = T@pps1840+ 85504041

+6 pp—1 5 gqt ‘Sp',p 5«;’,0 ) )
where T is the magnitude of the nonvanishing matrix ele-
ment. For n > 1, the matrix element of 77 is composed of all
processes in which a total of n hops is distributed in all possi-
ble manners among the two hard spheres. Thus, one has

x| pg) =T" Y P "941,97)|91,92), &)

4192
where P,(79(q,,q,) is the number of random walks of 1 steps
that start from | p,¢) and end up at |q,,¢,), withg, <g,. the
quantity P,79(g,,q,) can then be computed by considering
first the sphere at g to be fixed, and allow it at p to move to a
position g + ¢, — ¢, < ¢. For this situation the distance be-
tween the spheres is then of g, — ¢, steps. The number of
these particular random walks of » steps is given by*

2,7 Nqq,) = P,lg, — 9, — (g — p)]
~P,lg,—q,+(@—p)], (6)
where

pia=(, " )= d )

3(n + x)) (40 + )13 — 01!

This is the expression* for one-dimensional walks against the
absorbing barrier of the sphere held fixed at g. By now letting
this sphere move to site ¢, and that at ¢ + g, — ¢, tosite g,,
one obtains the final state |g,,9,), for which the distance
between the spheres is also of g, — ¢, steps, as in the state
|g + g, — 9,,9)- The quantity P,‘»?(g,,q,) can then be ob-
tained from Z,(79(q,,q,) in the following manner: One sub-
stitutes in all possible ways k of the n, steps taken to the right
by the sphere that moved from site p to site ¢ + ¢, — g, by
steps taken to the left by the sphere held fixed at g, and also
substitutes k + ¢, — ¢ of the n, steps taken to the left by the
sphere that moved from site p to site ¢ + g, — g, by steps
taken to the right by the sphere held fixed at g. The sphere
originally fixed at g obviously ends up at site g,, while the
sphere at ¢ + g, — ¢, ends up at g,, since the process of sub-
stitution does not alter the relative distance between the
spheres. We will then have
n
) e

n
P,,(P‘q)(q g = g)n(p,q)( R ( 1)(
142 91,92 ; kMN\k+q,—q

where
ny+n,=n and n,—n,=qg-+4¢g,—4¢,—p, )

the sum on k being over all possible values. The sum over &
can be easily evaluated since one has

; (Zl)(k + Zi - q)

1 —g—1 — i\ 72
= 2 bdez21 Zk—k ( )( )
27‘ri§ kz;:’ k/\k'
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= -1_§%zqz—q(l+z)n.(l+z—l)n,

2mi
= __1_.§é.z_zqz—‘1*"z(l_+_z)m+nx

27i z

1 §dz ‘13*9*"2+k(n)

= z—. 27

T 2miJ z k

(-2 0
=\ +q-q) (10)

where the counterclockwise contour with |z| < 1 need only
enclose the origin in the z plane. Solving (9) for n,, one finds
that

n,+q—qg,=%n—9,—q,+q+p (11)
so that finally

g(ﬁ’)(ﬂz_q)ﬂn[ql+q2—<q +p] (12)

and

P, "g, ,q,) =2, "q,,9.)P, g, + 49, — (g +p))
=P, [¢—9 —@—-p)]—P, 9. —q,
+@—-pDP, (¢, +9. —(g+p]), (13)

which then gives the generalized nth moment of the spectral
density.?

One then has

(P\q \1a| PY=Cp'q'| "] p.g) =T" P, P9(p'q") (14)
and

) n

(P g'1G@|pg)=

n=

P"(p ), (15)

zn+l

the series in (15) converging for |z| sufficiently large. This is
evaluated in the next section in terms of an integral represen-
tation and the region of convergence is established.

3. INTEGRAL REPRESENTATION OF THE PROPA-
GATOR AND SPECTRAL DENSITY

Defining 7' /z = g, we obtain

!’ ' 1 & n ’ r
(Pq1G@Ipg)=— % 5 P PO(p' g, (16)

n=0
where we evaluate the series in # by introducing an integral
representation for P (*9(p',q’), such that*
Pn( p,q)(p"q')
=(P,lg—p —(@—P)=Pld—p +@—p)])
1 dz ( 11— _42'2)1/2)\p'+q’—(q+p)\
X —t
2miJ Zn ! 2z
x(1 — 4z~ 2 an
The contour of integration in (17), as shown in Fig. 1, is a
counterclockwise contour C, with |z'| <} which encloses
the origin z’ = 0, and in (17) we have written for the second
factor of (13) an integral representation.®
One now deforms the contour C, to that of C, around
the cuts on the real axis, which extend from |z'| = § to
|2'] = o. Since the integrand obviously vanishes faster than
Z' ~ 1, the integral on the circle at infinity is zero. By flatten-
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FIG. 1. Contours used in the evaluation of Eq. (17).

ing out the contour C, one is finally left with an integral of
the discontinuity of the integrand across the cut, which is
simply given by its imaginary part. We will then have that

— (1 —42H2\IP +a —(g+p
Im(l (1 —4z%) )

1— 4212 — 12
= ( )

(422 — N2 \I1P +9 —(g+p)
= @2 1 Re( LH D) )’

22,
(18)
But since 1 + i(42'? — 1)'/% = 22 exp(j@) where tanf =
(42 — 1)'/? and cos@ = 1/22/, one has that
. l2_ 172 |'+'_(+)'
Re(1-{-1(42 1) )" 9 —@+p
kl
=cos|p'+q' —(g+p)|6 (19)
so that
(p.9), L 1 ® dz’ ’ '
PPN pg)= —2| ——(P,lg—p' —(q—p)]
2mi D nt!
~P,g —p +(@~pIN2)
X COSlp +q_(?+P)|0 (20)
(42'2 _ 1) /2

for n of the same parity as p’ + ¢’ — (g + p), and zero other-
wise. The integral representation of the propagator is then
given by
(P'4'1G@|pg)

2 (% dz

= ———cos| P+ ¢ — (g +
7z 12 (42’2 _ 1)1/2 |p q (q p)[

X "2:‘,0 ’i, (P.lg —p —(@—p)]

zm
where the orders of integration and summation have been
interchanged. The sum on 7 can be easily done since it can be
expressed in terms of the generating function* for one-di-
mensional random walks. In fact, for |;/z'| <}

n

S 2 _Pl¢—r—@-p]

s z'" +1
_( 1—[1 _4(5/2)2]1/2 )lq’— P —@—p
2(3/2")
X [1 _ 4(5/2’)2] — 172 (22)
so that finally

(P'q'|1G@)] p.g)
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2 (" dz'
7z i (422 — 1)'? z
X [1—4@/2)1~ "7
% [( 1—[1—4(/2)1" )"f 7 —@=p
2(3/2")
n211/2 —p —
_ ( 1—[1—4(/2)1" )Iq P+ p)l] 23)
2(5/2)
and there are no vanishing matrix elements, since the rela-
tive parity of the numbersp’ +¢' — (g +p). ¢’ —p'

— (g —p),and ¢’ — p’ + (g — p) is the same. The region of
convergence of the series representation in (15) is easily giv-
en from the integral representation (23). In fact, this last one
represents G (z) everywhere in the complex z plane, and is the
unique analytic continuation of (15) inside the circle
|z| = 4T, having an infinite number of identical moments as
(15) in the region |z| > 4T, where (15) converges. The func-
tion in (23) has a cut on the real axis inside the circle
|z] = 4T, where the spectral density will not vanish. In fact,
the process of analytic continuation represented in going
from (15) to (23) is fundamentally the same as that of the
continued fraction® obtained as the (#— o) limit of the ra-
tional [n,n — 1](z) Padé** approximants of (15). In the latter
case the poles and zeros of the Pade approximants become
dense, as n— 0, in the interval ( — 47,4T ) where the cut of
the function (23) appears.

The diagonal element when the spheres start some dis-
tance v apart, i.e.,, whenp’ =pand ¢ = qwithg =p + v, is
associated? with a usual diagonal spectral density. Denoting
this matrix element by G *’(z), we obtain
GV = 2 (T4
7z )iz (427 — 1)'?

x[l _( 1= “2—(;5)/2')2]“ )] 24)

The corresponding spectral density is given by?

cos| p'+qg—(q+p)|f

’

(zrz _ 452) —1/2

G = —1—— [G Y — i8) — G (e + ib)]
27ri
1

T

ImG (e — i) 25)

which in turn gives back the associated diagonal moments,
since

+ oc
pO=(pp +v|F"| pp+v) = J de e" I (e) (26)

clearly holds.

From (24) and (25) one finds easily the discontinuity of
G “(z) across the cut on the real axis; this is, of course, possi-
ble since in the integral representation (24) ¢/ * the moments
of G “(z) are implicitly given. One then finds, for |z| <47,

) 2 (2T dz 2.2 N —1/2
Iy = — ———— Im[(z?2* — 4T} ]
772 1,2 (4212__ 1))/2
t (252 AT2NI/2\2v
X[1_<zz (%2 - 4T?) ) ] @7
2T

27 /2 ,
-2 dz (4T? — z22)—\2
w2 (422 = 1)
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L AT 2 012 N2
XRC[I_(22+1(4T2T 2'*z%) ) ] 28)

But
’ ; 2 12.24\1/2
Re( 2’z 4+ i(4T? — 2'%2%)
2T

where cosa = z'z/2T, and so
2T/|z ) 22
GOg) = 4 dz sin“va (30)
sz 12 (42»2 _ 1)1/2 (4T2 _ 22222)1/2
for |z| <4T and zero otherwise. This can be written in a more
convenient form by changing variables to k '=|z|/47T<1 and
x = 2k’z'<1, so that

2v
) = cos2va, 29

1 J ! dx sin’va
2T Ji 2 —k :2)1/2 ¢! _X2)|/2’
where cosa = x. Since sin “va can always be expressed as a
rational function of x, the integral in (31) can always be ex-
pressed’ in terms of the complete elliptical integrals K (k),
E (k) of the first and second kind, respectively.

5) = 31)

Forv=1,
G(z) = 1 1 (1-—x2)1/2
7.7,27“ k,(xl_kIZ)l/Z
1
= —— [K(k)—E(k)], 2
772T[ (k) (k)] (32)

where k = (1 — k’?)'?<1 is the modulus of the integrals.
Forv =2,

o 4 (' X1 —x)V?
y(Z)(z) = T/"2T J;\,,dx (xl _ k !2)1/2
4
= 1 —kE*k k2[K(k)—E(Kk)1.
3772Ti( YE (k) +k"“[K(k) G

(33)

In general for v odd ¥ ’(z) diverges logarithmically for
z—0, while for v even & “)(z = 0) remains finite but in-
creases with v, so that in general

lim %Yz =0) = o. (34)
Furthermore, when v—oc. & *(z) converges to

g(w)(z)z (1 _x2)71/2

1 J’ ! dx
22T I (> — k)2
=K (k)/27'T (35)
everywhere except at k' = 1.
Let us turn now to a transformed generating function*

G (z) for the two-particle random walk. We notice that (15)
can be rewritten as

FIICDIFD = 3
0

n=

n

PP B, (36)

Z" + 1
wherep=q—p,g=q+p,p'=q —p.q =4q +p',and
PP 5. g = (P[5 — Bl — P[P +pDP,[T —q]. 37)

We then introduce*

o n

F16@| D= 3 <P, ) = P[P + D)

=0
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X Yali 7P, (7 - g, &)

where |a|<1. The sum over g’ can be evaluated®® in terms of
the integral representation introduced in {(17). One finds’ for
D — peven,

Sal?ap g -gl= 2 g
2 7 S xt !
2 ot
X(_i(l*ﬁL)’ (39)
x2(1 + a2)2 _ a?.

while for ' — p or § — § odd, one finds (see Appendix A)

Yal? ap,[7 —g1= 2L [T X
< " T iz x" (@x? — 1)
(1—a?)
x2(1 + a2)2 _ a2 ’ (40)
Then for p” — p even, (38) becomes
PG| P)
_ 2 (7 dx ( x*(1 —a*) )
7z h2 X(4X2 . 1)1/2 xl(l + a2)2 . a2
T" o " =t =
X P,[p—pl = P,[P +P) (41)
n'=0 (xz)"

the sum on n being evaluated according to Eq. (22). We note
that (41) can also be obtained directly from (23), since
1~af

al? cos|g|0 = 42)
2 4] 1 + a* — 2a* cos26

g(even)
with cosf = (2x) ~ .
One may consider the spectral density associated with
(41) when @ = 1, here (42) behaves as § (9), and from (38)
one obtains

#N6, D] Py = i Ty

n =

®,lp —p1 —P,[F +PD.
(43)

zn+1

Then for 5’ = p = v, one finds
Imp|G,_ (2| p) =2 sin2v0 /[(4TY: — 221'/%  (44)

with cosf = z/4T. We will turn now to several physical ap-
plications of the formal results obtained in Secs. 2 and 3.

4. PHYSICAL APPLICATIONS AND COMMENTS

In the preceding Secs. 2 and 3 we have established some
formal results pertaining to the propagator and some of its
generalized spectral densities, of a Hamiltonian &% that de-
scribes a system of two hard spheres that are allowed to hop
on a chain only through nearest neighbors. The chain is de-
scribed by a single matrix element 7 between nearest neigh-
bors. Some direct physical applications of these results will
be made in this section; as we will show, some of the spectral
densities obtained can be directly related to experimentally
measurable quantities. Let us first note how the system treat-
ed is mathematically isomorphic to a different physical prob-
lem. This is the problem* (see Fig. 2) of a two-dimensional
rectangular crystal which has been cleaved along a main di-
agonal line ““surface.”

Conceptually, this can be visualized either as a real*
crystal in which three-dimensional aspects may be neglected
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FIG. 2. Two-dimensional lattice phase space. Absorbing barriers on line 1.
Reflecting barriers on line 2. Origin and hollow dots cannot be reached by
the representative point.

(such as might be the case for states' localized near the two-
dimensional surface of the cleaved crystal) or as a two-di-
mensional lattice phase space where the representative point
of the two hard spheres moves. According to the matrix ele-
ments in (4) the representative point is allowed to execute a
random-walk motion only between nearest-neighbor lattice
sites in the plane lattice, with a matrix element for hopping
also given by 7. The hard-core condition on the spheres is
constructed by cleaving the two-dimensional crystal and in-
troducing a line surface of absorbing® barriers at the diagonal
points ¢ = p. This is represented by line 1 in Fig. 2. As point-
ed out by Di Marzio," such a line of absorbing barriers is
equivalent physically to an adjoining parallel line (line 2 in
Fig. 2) of perfectly reflecting® barriers. Since in one dimen-
sion the hard-spheres cannot be reordered by nearest-neigh-
bor hopping, the points in phase space (Fig. 2) denoted by
empty circles cannot be reached by the representative point.
Also, we note that the transformation from the g and p axes
tothe g and p variables [Eq. (36)] presented in Sec. 3 amounts
then to a 7/4 clockwise rotation about the origin in this
phase space. Within this context, the spectral density & ¢)(z)
in (31) gives then the local density of states (see Ref. 10) on
the (v 4+ 1)th crystallographic line parallel to the line surface
1. As v— w0 the local density of states increasingly oscillates
in a damped manner, converging to % (*)(z), the uncleaved
crystal density of states. Furthermore, we note that the ;N
hard-spheres generalization of this isomorphism (with ¥>2)
involves a N-dimensional cubic lattice, where the constraints
X, <X <X; <+ <Xy on the positions of the spheres, are giv-
en by the intersection of appropriate hypersurfaces.

Except for N = 2, however, the resulting phase space
will always have wedges and corners. For this case, the cor-
responding exact solution has not been obtained.

Let us consider now the electronic band of spinless fer-
mions in one dimension. Even though electrons have spins,
one can show'*! that for a strongly correlated unidimen-
sional tight-binding band, such as can be described by a
many-body Hamiltonian, like the Hubbard Hamiltonian'*
with U = o« (U giving the energy of repulsion of two elec-
trons of opposite spins on the same lattice site) and with
nearest-neighbors hops, the magnetic properties become
those of a set of localized spins, completely decoupled from

1765 J. Math. Phys., Vol. 20, No. 8, August 1979

the kinetic degrees of freedom and given by a Curie spin
susceptibility. The origin of this somewhat paradoxical be-
havior lies in the fact that in one dimension, nearest-neigh-
bor hops alone cannot reorder'’ the electronic spins; thus
simulating the hard-sphere behavior. The partition func-
tion'® of such a highly interacting system becomes that of a
spinless fermion simple tight-binding band with parameter
T. From our results a partition function Z can be obtained in
a manner similar to the path-counting technique of Beni et
al.’ In fact, Z will be given by

N
ZPB)=N > |dze B4 0, (45)
v=1
where & *)(2) gives the local density of states at the (v + 1)th
crystallographic line, and N— o is the manner of lattice
sites. Then one obtains, interchanging summation with
integration

N ! dx
ZB)= — dze*Bzf =
(ﬂ) WZTJ‘ K (x2_kf2)1/2
N
X(1=x)""2 Y sin*va, (46)
v=1
but
N
S sin*va = §(N + § — sin(2N + Da/2 sina). 47

v=1
Thus, except for & = 0, the last term in (47) is thermody-
namically negligible when N— oo, so that finally

2N [+
= k' exp( — 48Tk YK ((1 — k™)'
26)= 2% fd exp( — 48T DK (1 — k)'7)

= NI3QBT), (48)
where I, (23T ) is the hyperbolic'¢ Bessel function of zero
order. The internal energy follows from
dmz . 1,BT)

9B 1,BT)
which agrees with the result of Beni et a/."* for a density p of
spinless fermions of p = 1 — n/N (i.e., there are » holes in
the half-filled band and p = number of electrons/number of
sites) with # = 2. In fact, one may surmise that for n <N, the
partition function Z should be given by

Z(B)=N"I52BT), (50)

where terms of the order of n/N«1 or higher are neglected.
This comes about because the reflections of the representa-
tive point of the n holes (or hard spheres) against the surfaces
of the phase space, are thermodynamically negligible [as in
(47)] when N— o0 and n/N<1. Hence, it follows from this
simple argument and the electron-hole symmetry, that for a
low n/N<«1 concentration of electrons (or holes, from the
half-filled, p = 1, band), these will seem'”'* to behave as
spinless fermions, giving rise to an absorption rate propor-
tional to a delta function § (w), where w is an'® external fre-
quency. However, for an arbitrary concentration n/N of
electrons, there has been no rigorous proof'’'* of this asser-
tion, and it is certainly not clear from our argument whether
the collisions of the representative point against the surfaces
of phase space, coming from higher-order terms in n/N,
would still yield a conductivity o(w) proportional to § (w), as

(49)
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such collisions are thermodynamically certainly
nonnegligible.

Another useful application of the spectral densities ob-
tained, lies in the study of the optical absorption spectrum®*®
of a strongly correlated electronic band of the Hubbard type.
Although for the spinless fermion band discussed above one
has to consider an assembly of many “hard spheres” (repre-
sented either by the electrons or the holes), and the condition
U = « forbids double occupancies of lattice sites by paired
electrons, thereby yielding a null conductivity o(w) for an
exactly half-filled (p = 1) band; one may consider a first
order correction to this in terms of the parameter 7 /U«1.
Here double occupancies are possible since U~ oo . Howev-
er, as it has already been shown,®® one may prove then that
the optical absorption spectrum (o ~ U) of the frequency de-
pendent o(w) conductivity, is given essentially in terms of
the appropriate spectral density of the two “hard spheres”
alone. This may not seem exceedingly surprising, if one real-
izes that the optical spectrum of such a many-body system,
arises physically (at low temperatures), from the creation by
a light quantum, of an excitonlike excitation, composed of a
two-electron paired site and the immediately adjacent cre-
ated hole. Both the doubly occupied site and the hole propa-
gate independently as “‘hard spheres” in the lattice, until
they are annihilated somewhere by mutual recombination.
Although in principle it would be possible to have multiple
creations and annihilations of other electron-hole excitoni-
clike pairs, thereby creating in the lattic innumerable hard
spheres, such processes are of higher order®*’in T'/U<«1, and
hence negligible for U— . In fact, as we have indicated
previously’ the line shape of absorption is given by the spec-
tral density of the transformed generating function in (41)
for v = 1 (see Appendix B), i.e.,

Im(1|G, @)|1) = LT((l — k" sin®B) cosB K (k)
w
+ %(1 _ k:z sinzﬁ)”z

xsinf Aq,(B,k) —cosB E(k )), (51

where A, (8,k) is Heuman’s lambda function’ and

B=sin"'Q2/Na +a M) (52)
In expression (51) the center of the line shapeisatz = 0, and
the a parameter of the transformed generating function is
(see Ref. 9) seen to be related to the spin configuration of the
rest of the electrons. To the lowest orderin 7'/ U these can be
considered as fixed with a given spin configuration. Here the
spin configuration is important, since for U « the elec-
tronic spins may be reordered by nearest-neighbor hopping.
The spectral density (51) has been previously® applied to
some recently studied® low dimensional organic systems of
the TCNQ salts, and one-dimensional magnetic insulators,
with strongly correlated electronic bands.

It is important to point out here several novel features®®
of this spectrum, that can be understood in terms of the
cleaved crystal isomorphism. Both the absorption width, ex-
tending to + 4T onbothsides of k' = 0, and the logarithmic
divergence® at the center k' = 0 of the spectrum, are charac-
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teristics'® of the two-dimensional nature of the phase space.
Furthermore, the weak residual logarithmic divergence in
the spectrum (51), given for a close to one by

lim lim Im(1|G,(2)| 1)

a—1z—0

=~ L lim [(cosB)in(@/k")y. o+ B sinf — cosB |,
7T B—nr2
(53)

is interpreted as indicative'® of the existence of virtual bound
states associated with the line v = 1, or “surface” of the
cleaved crystal. The physical reason why one considers only
the plane v = 1 in the optical spectrum in (51), is due to the
fact that the quantum of light originally creates the excita-
tion composed by the hole and the doubly occupied site on
adjacent sites. Thus, the representative point (Fig. 2) starts
somewhere on line 2 and propagates freely in the cleaved
crystal, until it must come back to some other point on line 2,
where, so to speak, it disappears because of mutual recombi-
nation of the hole and the electron. The transformed gener-
ating function in (38) and its associated spectral density (51)
physically represent nothing but a weighted average (given
by a!? ~ 9" of such decreasing probabilities of recombina-
tion of the electron-hole pair, as its representative point is
annihilated further away on line 2, from its starting point on
the same line.

We should remark that, although for the conductivity
o(w) or optical absorption only the plane v = 1 is involved,
in other transport properties, like the thermopower, addi-
tional (i.e., v = 2) planes will certainly be involved; this be-
ing caused by the way the original excitation is created. For
this other transport property, next-nearest neighbors should
also be taken into account.

The ground state of the many-body system of which
(51) gives the optical absorption spectrum, is thought to be®”’
antiferromagnetic. Because of the translational invariance of
this spin arrangement, all mutual recombinations along the
points of line 2 (Fig. 2) are then equally certain, and one
obtains the ground state spectrum with @ = 1 in (51) [or
v=11in (44)], i.e.,

Im(1|G,_ @) |1) = [4T) - 221*/8T>. (54)

On the other hand, for @ = 0in (51), the representative point
must come back to its starting point to be annihilated, i.e.,
one obtains the local density of states on the surface of the
cleaved crystal, given by (32). It can be shown’ that this limit
a—0, insofar as it is applied to the optical spectrum dis-
cussed, gives the line shape of absorption for a ferromagnetic
arrangement of the spins in the lattice. For this spin arrange-
ment the electron-hole excitation cannot recombine any-
where but at its starting point (i.e., & = 0) in order to restore
the initial ferromagnetic arrangement.

It is well known that quasi-one-dimensional systems,
such as some TCNQ salts,” for example, are thought to be
unstable against Peierls® distortions.* It is interesting to
point out that the phase space isomorphism appropriate here
for a Peierls-dimerized linear lattice, with two different, T
and T, hopping matrix elements, is analogous to the one
presented, except that each lattic point in Fig. 2 should be
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connected with its nearest-neighbors through matrix ele-
ments given by Tand 7'’ alternatively, in both the p and the ¢
directions. Starting from this, it is straightforward to obtain
the generalization of (54) with 7547, because of the essen-
tially one-dimensional nature of the excursions of the repre-
sentative point in this case (see Appendix C). The general
treatment of this for |a|<1 [for example, appropriate for a
general disordered spin arrangement as in (51)] will be the
object of a future work (part II).

Finally, we also remark that we have laid the groun-
work for the inclusion of longer-range interaction between
the hard spheres. For example, the inclusion of nearest-
neighbor interactions within the context of an extended?*
Hubbard model, may lead here to the formation of bound
electron-hole pairs of an excitonic nature, because of the ef-
fective attraction between a doubly occupied site and an ad-
jacent hole in this case. Within the discussed isomorphism,
this amounts very simply to the inclusion of a constant sin-
gle-body potential® on the surface (line 2) of the cleaved
crystal. These other important physical applications will
also be discussed in Part II.

APPENDIX A

We show Eq. (40) for p’ — p odd; the proof for o — p
even’ being completely analogous. Introducing the integral
representation of (17), one finds

za'iialpn[q’ _q_]
q
0§ d

2mi ) 1

(1 _ 422) — 172
+ oo 1 —(1—4z2%)"? )Iql
X al‘]l(________
e Z

q = odd

— L dZ (1 _ 422)— 172 2a
2 zn+l
x( 1—(1—42%)'? )
2z

x[l—az(_lilz—z_ﬁﬁ)z]ﬂ’

where the contour of integration is that of C; in Fig. 1. One
now deforms the contour to that of C, and proceeds as in the
proof of Eq. (20). One must notice that the integrand in (A1)
has no additional sigularities except the cuts from [z| = 4 to
|z| = oo, since the equation 2z = a(1 — (1 — 4z%)'/?) has
(for z5£0) only spurious roots at z = (1/a + @) ~ 'fora < 1.
When a = 1 the poles of the integrand in (A 1) that appear at
|z| = 4 become merged within the branch points also at

|z| = 1. One then finds

> a7 %P7 —q)
7
4a (" dx 2

7 Ji2x"t! (4x?— 1)
. 2 1/2
% Re( 1+ i(4x* —1) )’
4x? — a*(1 + i(4x* — 1)/?)?
which leads to (40). Notice also that for 5 — jodd, » must be
odd, and that, apart from the factor (1/2)" * ' in (A1), the

(A1)

(A2)
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discontinuity on the real axis of the rest of the integrand in
(A1) is an even function of z.

APPENDIX B

We show Eq. (51). Starting from (41) one obtains
I=7rTIm(1|G,(2)|1)
_ Jtl dx (l _x2)l/2 x2(1 _ a4)
ko — kD)2 X1 + a2 — daPk >
and the substitution x = cos@, siny = sind /k brings (B1) to
the form

2 /2 2 a1 2 102 981/2
I=<1—a )j dwn sin*Y(1 — k ° siny) . (B

1+a*/Jo 1 — n?sin’y

(B1)

where
2 _ k21 + az)z

(1 _a2)2 + 4a2k2
is the parameter of the elliptic integral of the third kind’ in
one of its circular cases because of inequality (B3). Then

n with 1>n°>k?, (B3)

I= ( 1-a )[H(n",k )1 — k%/n?) + (k/n?K (k)
1+

a2
— E(k)], (B4)
where I1(n? k) is the complete integral of the third kind. By
using the addition formulas’ for 7(n*k ), one finds
(1 _az)z + 4k 2
1—-a*

Ta
+ [1_a22+4a2k2 1/2
Ty la-a ]

(Es)o

and the evaluation of /7 (a3 ,k ) with Heuman’s lambda func-
tion A, (B,k ), through’

I=

[K (k) — 1T (— (1 — a®)/4a’k )]

(B3)

2
Ag(Bk) —
@ k)= X&) e [ABR 1] g
l—ai  2[ai(l —ai)al — k)]
where a? = — (1 — a?)*/4a?, and
. 1 . 2

f=sin"'— = §in ' —Z= B7

(1—-a)'? (@a+ah ®7
finally leads to (51).
APPENDIX C

We generalize (54) to obtain the corresponding spec-
trum for a Peierls-dimerized linear lattice. Because of the
one-dimensional nature of the excursions of the representa-
tive point, these can be enumerated by using the continued
fraction representation (or infinite order Padé approximant)
method employed by Brinkman and Rice.” Denoting by T’
and 7"’ the consecutive matrix elements for hopping on the
linear lattice, we then obtain

Im(1|G, - (2] 1),
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Im(1]G, - ()| 1)
©n

=Im

Qry

__ery

22[1 —_ (_Z_T_)_Z

1
This continued fraction can be easily summed in terms of the
“self-energies” 2 (z) and X '(z), where
@ry

Z{1 - 2'(@)]

o

@ery

and 3’ (@)= —t 2L
Z[1 -2 @)
(C2)

()=

Thus, one finally obtains for the total Peierls-dimerized
spectrum

Im(1]G,_,(2)|V)p
=71 = TYT"u(l —~ T/TH8()

+81ﬂu¥—u+«ﬁ—rﬂuﬂmdm>

T"

where u(1 — T /T') is the unit step function, and 6 (2) is the
Dirac delta function. Of course, for T = T’ one reobtains
(54).
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A A-state Potts model with multispin interactions is considered which includes models recently introduced
by other workers in order to provide a Hamiltonian for site percolation. A duality transformation is
obtained for this model which becomes the matching relation for site percolation when A = 1.

1. INTRODUCTION

It has been known for some time' that the thermody-
namic properties of the A-state Potts model yield corre-
sponding properties of bond percolation in the limite A—1.
Recently Kunz and Wu? have extended this result to site
percolation by considering a generalization of the Potts
model to include multispin interactions. Ashley and Tem-
perley® have further developed this idea and shown that dif-
ferent Potts models can yield the same percolation problem.

The duality transformation for the Potts model with
two-spin interactions was obtained by Potts* using a transfer
matrix method. It was later obtained by topological argu-
ments (see for example Refs. 5 and 6) and may be written

@~ Dt 1) =4, (1.1)

where z is defined in terms of the interaction parameter K by
z = e~ *¥ and z* denotes the corresponding variable for the
dual problem. In Sec. 3 we generalize Eq. (1.1) to Potts mod-
els with multispin interactions. The duality relation for the
zero field partition function is seen as an immediate exten-
sion of the matching relation for the mean number of clusters
in a site percolation problem.” The latter is rederived by a

simpler method which avoids the use of nonplanar graphs.

In the case A = 2, the Potts model with two-spin inter-
actions reduces to an Ising problem with two-spin interac-
tions for which the duality relation was given much earlier
by Kramers and Wannier.® Duality for Ising models with
multispin intractions has recently received considerable at-
tention.”"* The A = 2 Potts model with three-spin interac-
tions in zero field is also isomorphic with an Ising model with
only two-spin interactions. Our result in this case enables the
self-duality relation for the Ising model on the triangular
lattice to be obtained without the usual reference to the hon-
eycomb lattice (see also Wegner!!).

In general the A = 2 Potts model with /-spin interac-
tions is isomorphic to an Ising model with even interactions
of order 2 [/ /2] and less, and seems not to have been dis-
cussed previously when />4 except perhaps as a special case
in the articles sited above.*!*

The model is introduced in Sec. 2 in a form which in-
cludes the conventional Potts model® as well as the models of
Kunz and Wu? and Ashley and Temperley.’ The correspon-
dence with bond and site percolation is discussed in a unified
scheme and the connecting formulas, some of which are re-
quired for the main discussion of Sec. 3, are derived.
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2. THE MODEL AND ITS RELATION TO PERCOLATION

Consider a system of spins S. Each spin has A states and
selected subsets interact via a Potts interaction. Let the set of
all such interacting subsets be denoted by I and define a
bipartite interaction graph G which has vertex set V' = (S,/)
and edge set

E = {(s,0) : 5€S, iel and sei.}.

Suppose that each interaction involves at least two spins, so
that the vertices of I have at least degree two, and also that
spins involved in each interaction /el are distinct so that
there are no multiedges. Let the states of each spin be in-
dexed by a variable ¢ = 1,---,A. In any state of the system let:

& = {iel: not all spins of / are in the same state},
7= {seS: snotinstatea = 1},
§ = {iel : not all spins of / are in state @ = 1}.

Assign zero energy to the reference state of the system in
which all spins are in state @ = 1 and an additional energy
— kT logz, for each ief, — kT logu, for each sen and

— kT logu, for each ief. If the variables {u,, seS'}, {u, z,
iel | all lie in the interval [0,1], then the reference state is a
ground state. The partition function is

Apy= 3 zZu’™, Q.1
spin states
where
z* = [Jzaand ™ = [[e.[Ju- (2.2)
ie§ sen el

(This convention for a variable raised to the power of a set
enables all interaction variables to be considered as distinct
without making the notation unduly heavy.) The model so
defined will be called a generalized Potts model and denoted
by (S,1).

Now consider the percolation model P on G in which
each vertex of §is “occupied” with probability 1 and each
vertex / of 1 is occupied independently with probability p,. A
percolation state may be specified by giving the vertices [’
C I which are occupied, and such a state occurs with prob-
ability p’ (1 — p)' *'". A path is a sequence of vertices, suc-
cessive members of which constitute an edge of E. An occu-
pied path is one in which all vertices are occupied. In any
percolation state two vertices are connected if there is an
occupied path between them, and a maximal set of connect-
ed vertices is called a cluster. A single spin will be thought of
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as connected to itself, and so a cluster may be single isolated
spin. The “percolation average” of arandom variable X (J ‘}is
defined by

Ay,=>p 0 =—p"rxU).

1'clit

(2.3)

Forexample X ( "y may be the number of clusters or the num-
ber of spins connected to a given spin when the vertices /' are
occupied.

We now demonstrate that the partition function of (S,7)
may be written as a percolation average for P. First note the
identities

z =[]z + (1 —2)8()]

iel

= 2 21— z)”H&(i), 2.49)
"cr ief’
where the indicater variable § (¥) is defined by
_ 1, ifidé
0 = {o, if ick. 2.5)

With p, = 1 — z, and taking I to be vertices of  which are
occupied in P we may write

2 = (JJ60), (2.6)
el’
By definition of & we see that
1, if all spins in each cluster are
16 = in the same state, )

el 0
Substituting (2.6) into (2.1) and interchanging the sum and
average we obtain,

AG—pw = ([ 11 +G = e*e1),

e’

otherwise.

(2.8)

where ¢’ is the set of all finite clusters corresponding to I’
and ¥ (c) 1s the subset of vertices ¥ which belong to the clus-
ter ¢. In restricting the product to finite clusters we are as-
suming that sufficient i variables are less than one, so that
1V = 0 for any infinite cluster.

The result (2.8) will now be used to relate the thermody-
namic properties of (S,7) to the percolation functions of P.
We shall take z = 1 to mean u,— 17,V vel.

The free energy InA yields a generating function G (p,u)
for percolation theory, since

J — V(C)>
A=1 <Z'[l p'

5 (p)=——InA
ce't’

= (2.9)

Whenu = 1, ¥ (p,u) = {(n),, the mean number of finite spin
clusters, which for an infinite G is normally calculated per
spin or per interaction, since % itself would be infinite.

Differentiating (2.9) w.r.t. i,

24 Vi)
= 6 " s
Sy, o,

(2.10)
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where §, = 1 if there is a finite cluster ¢, containing vertex v
but zero otherwise. Setting ¢« = 1 gives the probability that v
is part of a finite cluster, so that if G is finite,

) [
yly—y Po
For Ginfinite and ve¥ the percolation probability P, may be

defined as the conditional probability that, given v belongs to
a cluster, it belongs to an infinite cluster, and hence,

ve s,

vel’ 2.1

_1 39
P=1—p! o L1 2.12)
wherep, = lifseS.
Setting u, = 1, Vsand u;, = u,V i in (2.10) gives
ay c
mﬂMM=wmmm, (2.13)
Vipe=p

where I (¢) is the set of interaction vertices in c. | (c,)| is a
measure of the cluster size, and if vel, it is the standard mea-
sure of cluster size in the site percolation problem P, defined
later. Equation (2.13) therefore gives the moment generating
function for the cluster size distribution. The moment gener-
ating function for |S (c,)| may be obtained by setting ., = 4,
Vs and u; = 1, V i. This is an alternative measure of the
cluster size and is, in fact, the number of sites in a bond
problem (see later), whereas |1 (c,)| is the number of bonds
(see also Stephen').

For v, v’ € ¥V, the pair connectedness P, is the probabil-
ity that v and v’ belong to the same finite cluster. This may be
obtained from (2.10) by differentiating first with respect to
4, and then with respect to y,, since the only terms which
survive the second differentiation are the ones where vand v/
belong to the same member of ¢'', thus

N
W G, dnpy, T
:E?_?ﬂ_\“:, if vy, 2.14)

The corresponding derivative of In A is a spin correlation
function.

The above relationship between percolation and the
Potts model has been derived by other authors for less gener-
al models.

Kastelyn and Fortuin' demonstrated a correspondence
between Potts models with only two-spin interactions and
bond percolation. This was recently developed by Stephen'
and Wu." For such amodel (S,7) the vertices / of the graph G
have degree two, and for each i € I the pair of edges
{(51,0),(i,s,)} may be replaced by a single edge (s,,5,) to give a
graph H. This operation is called suppression of the vertices
I. The edges so formed are deemed to be occupied when the
corresponding vertex of i is occupied and an occupied edge
provides a connection between its terminal vertices. The per-
colation model P corresponding to (S, ) is clearly the bond
problem on H. Figure 1(a) illustrates the Potts model for the
bond problem on the square lattice.

J.W. Essam 1770



FIG. 1. (a) Kasteleyn-Fortuin correspondence
between a Potts model with two-spin interactions
and the bond problem on the square lattice. The
self duality of this model is illustrated (b) Kunz-
Wu correspondence between a Potts model with
six-spin interactions and the site problem on the
triangular lattice. The dual model is also shown.

Key : 0 = interaction vertex, @ = primary spin, © = dual spin,— = primary edge, ---- = dual edge.

The percolation model P corresponding to any Potts
model (S,/ ) may be converted into a more conventional per-
colation model P in which all sites are randomly occupied.
Thessites S of G which are occupied with probability one may
be removed by the following “star” transformation. For
each vertexse Slet ] (s) be the vertices of I which are adjacent
to s. Then replace the edges {(s,i),/el (s)} by the complete
graph on I (s) and remove s from the vertex set of G. If s has
degree two this corresponds to suppression. If s has degree
three it is the star—triangle transformation. Multiedges
formed during the transformation may be replaced by single
edges without changing the connectedness of the model. The
resulting graph will be called G. The site clusters of P corre-
spond to the clusters of P, but a cluster of P which is just a
single spin has no counterpart in P. However, the following
simple relation holds between the mean number of clusters
for the two problems

(m),= (A, + 3 (1 —p)'®. (2.15)

seS
The pair connectedness for two vertices i,,i, € [ is the same in
both problems.

A given site problem may correspond to several Potts
models. Kunz and Wu? showed that the site problem on a
graph H corresponds to the Potts model (S, ) obtained by
taking / to be the sites of H and associating a vertex of § with
each edge of H. Clearly H is the graph G defined above. The

FIG. 2. Ashley~Temperley correspondence between a Potts model with
three-spin interactions and the site problem on the triangular lattice. The
key is as in Fig. 1.
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Potts model for the site problem on the triangular lattice is
shown in Fig. 1(b). This model involves six-spin interactions.
An alternative Potts model for which Pis the site problem on
the triangular lattice was given by Ashley and Temperley.’
This model is obtained by taking .S and 7 to be the two trian-
gular sublattices of a honeycomb lattice as shown in Fig. 2.
In contrast to the Kunz-Wu model only three-spin interac-
tions are involved.

It is well known that any bond problem may be trans-
formed into a site problem on a different graph. In the pre-
sent context, if the bond problem on a graph H corresponds
by the Kastelyn-Fortuin transformation’ to a Potts model
(S,7), then the equivalent site problem is P described above.

3. DUALITY FOR PERCOLATION AND THE ZERO FIELD
PARTITION FUNCTION

Consider a Potts model (S,/) and for simplicity assume
that all vertices have at least degree two. Assume also that
the interaction graph G is connected and planar, and that it
has been drawn in the plane to form a plane graph (also
denoted by G). The graph G obtained from G by the star
transformation is not necessarily planar, and is in general a
decorated mosaic.” The dual model (S *,/) is constructed by
placing a vertex of § * in each face of G and connecting it by
an edge to each vertex of / which lies in the boundary of the
face in such a way that no two edges intersect. The plane
graph so formed will be denoted by G * and G ** = G. Figure

FIG. 3. Duality on a finite graph. Both Potts models correspond to the site
problem on the tetrahedron. The key is as in Fig. 1.
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FIG. 4. Corresponding percolation states for the site problem on the square
lattice and its matching lattice. Open circles are occupied on the square
lattice, whereas solid circles are occupied on the matching lattice.

3 shows the dual transformation between the cube G and the
decorated tetrahedron G *. Notice that the Ashley-Temper-
ley mode! of Fig. 2 is self-dual, as is the square lattice with
two-spin interactions [Fig. 1(a)]. The dual of the Kunz—-Wu
model of Fig. 1(b) is the diced lattice in which the sixth order
vertices are interaction vertices. The percolation model P
corresponding to the latter model is also the triangular site
problem.

The percolation model P * corresponding to (S *,1) to-
gether with P constitute a pair of matching site problems.’
These have the property that the mean number of clusters at
probability p for Pis related to the mean number of clusters
at probability 1 — p for P*. (For the models in Fig. 3, Pand
P * are both the site problem on the tetrahedron which is self-
matching.) We now obtain a similar relation for P and P*
which by (2.17) implies the matching relation between Pand
P *_ A relation between the partition functions of dual mod-
els is also obtained by the same technique.

Suppose that the occupied vertices of G in a percolation
state of Pare colored black. This means that all the S vertices
are black, together with the subset 7 of I. The black vertices
together with the edges of G connecting black vertices form a
subgraph which we shall call G, the components of which
are the clusters. A corresponding state of P * may be obtained
by supposing that the vertices / \I " are occupied on G *. If
these vertices together with the vertices S * are colored white,
the white vertices define a subgraph G, the components of
which are the clusters for this state of P *. Figure 4 shows a
pair of dual models and the corresponding states. The model
(8 *,1)is the Kunz—Wu model? for which P *isthesite prob-
lem on the square lattice, and its dual (S, ) is such that P s
the site problem on the square lattice with first and second-
neighbor connections. The latter is the matching lattice of
the square lattice. The figure illustrates the following
theorem.

Theorem: With Gz and G, defined as above:

(a) every component of G, is contained within a single
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face of G, and

(b) each face of G contains exactly one component of
G, The same statement is true with G and G, inter-
changed by symmetry of the dual construction.

Proof: Gg and G, never intersect, since the only possi-
ble intersection points are vertices of /, and in any percola-
tion state each vertex of I either belongs to G or to G . It
follows that any two vertices which are connected in G,
must lie in the same face of G, which proves part (a).

To prove part(b) we first notice that the faces of G are
made up of faces of G each of which contains a vertex of § *.
It follows immediately that every face of G contains at least
one component of G . To show that there cannot be more
than one, we must prove that any two vertices of G, which
lie in the same face of Gz are connected on G . It is sufficient
toprove this for two vertices of S *, since any vertex of / \ I ' is
on the boundary of some face of G and is therefore connected
toavertex of S *. Suppose that the vertices s, and s, of S * liein
the faces F, and F, of G which are within the face F of G
Since Fzis a connected region of the plane, the faces F, and F,
must be connected by a chain of faces of G which are within
Fp, successive members of which have edge to edge contact
along at least one edge of G' which is internal to F. An edge
of G which s internal to £y must have a white vertex which is
inf N1, and hence vertices of S * which lie in successive faces
of the chain must be connected on G, via this white vertex.
Hence the vertices s, and s, are connected by a chain of white
vertices.

It follows from the theorem that the number of faces f,
of G, including the infinite face, is equal to the number of
components n, of G, which is the number of clusters for
the problem P *. Also the number of faces of G is deter-
mined in terms of n, by Euler’s law applied to G, thus,

Ny =fg=ep—vg+ng+ 1 3.1
On taking averages over all percolation states,
(np), =P @)+ (np)i_,, (3.2)

where the average on the right is calculated for P *, for which
1 — p, is the probability of occupation of . The function
@ (p) is linear in the variables p,, and is given by

2@ =|S| +2Pi—27’ipi— 1,

el iel

(3.3)

where y,is the number of vertices of S which are adjacent to .
Notice that

PN —p)=|S|+ |- |E| =3 pi+ > 7iPi— L,

el iel

= “S*[_Zpi_f_z'}/ipi'*‘ 1,

iel iel
= — D *(p), 3.4)

where we have used (3.3) with p; = 1. Notice also that by
construction ¥, is also the number of vertices of S * adjacent
to i.
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The matching relation obtained by Sykes and Essam’
was

(fip)p=No @)+ (Tw)i _p» (3.5
where N = |I |. Using (2.7) we find

Ne@ =P+ X p'¥ =310 -p)Y, (3.6)
seS

seS*
which should be compared with their equation (6.14).

The above relations are exact when G is a finite graph
but should also apply to an infinite lattice graph in the ther-
modynamic limit, in which case one works with the mean
number of clusters per vertex of I. A proper treatment of this
limit will not be attempted here. However, we note that al-
though our main theorem is true when the lattice is made
finite by embedding it in a torus in the usual way (see Fig. 4),
not all subgraphs G are properly embedded in the torus.
This creates difficulties when applying Euler’s formula for
the number of regions.

As an illustration of the above formulas if P is the site
problem on the square lattices with first and second neighbor
connections,

Pp)=N(1—-3p)
and
d@)=1—-3p+2p"—(1—-p),

=p =4’ +4p’—p',

in agreement with Table II of Sykes and Essam.’

A dualityrelation forthezerofield partition function will
now be obtained. Setting u = 1 in (2.8),

A(l—p, )= (1", (3.7

where n = | ¢’|, the number of finite clusters in the percola-
tion model P. The duality for A may therefore be considered
as a percolation problem, and the notation of the first part of
the section will be maintained. By definition,

AM,=A"), =3 pla—p A (3.9)
I'cr
From (3.1)
nanW+|S|+|1l|—'z7/i_l’ (3.9)

iel’
which is Eq. (3.3) before averaging. Substituting in (3.8)
gives

(A", =A1=1S A T=7(1 = p)TA"™, (3.10)

r'cr

and renormalizing the distribution gives
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am™)

P
=AST A —p+pA TN Y PN A —ph A,
1'clt
=AM 1 —p4pa' 1", (3.11)
where
p*= 1=p (3.12)

Cl—ptpAt T
WhenA = 1,p* = 1 — p, which is the usual percolation
relation. In terms of the Potts model variables,

AED =AY z4+ 1 =24~ "A*z*1), (3.13)

where

pe_ 1= (3.14)
AT 4 (1 -2
which may be written in the symmetric form
C '-D '=D=A7"1 (3.15)

Equations (3.12), (3.14), and (3.15) are local relations and
the subscript / on the variables z, p, and y has been sup-
pressed for convenience. For model with only two-spin in-
teractions y; =2, V iand Eq. (1.1) is obtained.

Itis worth noting that when A = 2 the Ashley-Temper-
ley model’ is isomorphic to a triangular lattice Ising model
with a two-spin interaction parameter y = z'/? for which the
duality relation reads (with y = 3),

O =D -1 =4
and since the model is self-dual, the critical point (assumed
to be unique) is located at y? = % as found by Onsager.'
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The free energy of the Husimi-Temperley model under a random field is obtained in
terms of the n-replica method. The interchangeability of various limits such as the
thermodynamic limit, the limit n—0 where n is the number of replicas, etc., is
justified on the usage of the n-replica method in the course of the evaluation of the free
energy. A tricritical point is found for the model under the random field which takes on

two values o and — o with equal probability.

The n-replica method has been used much in the course
of the evaluation of the free energy of random quenched
systems and has contributed to the development of the spin-
glass theory.'* However, this method contains several points
to be clarified on its usage, e.g., the existence of the thermo-
dynamic limit, the order of the #—0 and the thermodynamic
limit,** the analytic continuation of the function of integer n
to the one of nonintegral n,°’ the minimization of the free
energy by the method of steepest descent,’ etc.

The Husimi-Temperley model (or Weiss type model)*
under the random field distributed according to a Gaussian
distribution has been discussed by Schneider and Pytte® as a
simple example to be solved by the n-replica method. They
have shown that their results obtained by the formal usage of
the n-replica method are exact by constructing tight upper
and lower bounds for the free energy by using the Gibbs—
Bogoliubov inequality.

It is, however, interesting to clarify and justify some
mathematical steps such as interchangeability of various
limits, etc. mentioned above on the direct usage of the n-
replica method in a calculation of the free energy. These
troublesome steps are avoided or ignored in the previous
calculations.”*'° In this note, we discuss the Husimi-Tem-
perley model under the random field distributed according
to the various types of distrubution in a different viewpoint
of the n-replica method from the one described previously in
order to clarify and justify the points mentioned above.

The Hamiltonian considered here is given by

N
’%pNz 2 S,', 5= =+ 1, (1)

il Mz

zl&
wMz

1

where J > 0 and h +is the random field distributed according
to p(h). p(h,) takes the Gaussian diitribution N (h,0?), the
uniform distribution U (4 — 3'%0,A + 3'/%0) or the one ex-

pressed by
! .
p(h) = 2 cj‘S( hi"hj) 2
i=1
with3!_ ¢,;=1,3/_,¢hy=h,and3!_ ch? —h’>=0"

When we consider the site-random Husimi-Temperley
model under the uniform field, the Hamiltonian is immedi-
ately reduced to Eq. (1) with

p(h) = c8(h,— )+ (1 — 8 h, + 0). 3)
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Our aim is to find the free energy per site when the
number of the total sites NV goes to infinity:

~Bf= lim - (logZy({h))x @

where B = 1/ky T as usual and
_ NS E 172
Zuihh= 3 - T e =2V (#)
x f " dte= ™" ] cosh[2(87)"t + Bh,] (5)
— i=1
and
(@n({Ad)) N
f f ﬁ (dh; p(h)]Qn({h:). (6)
© =1
Equation (4) is expressed as
_Bf= lim lim -~ & ,(x), ™
Novoo x—+0 dX
where
Dy (x) = (Z7N (RN (¥

We note that @, (z) is an analytic function of z in the domain
= [z | Rez> — €], where € is a small positive number,

when we choose argZ %, ({4,}) = 0 and arg(Z *({A,})) ¥~
= 0 when z = x > 0. We shall later show that { @, (2)} con-
verges uniformly as N— oo in D. Then we have

—fBf= lim ——d & (x), 9)
x40 dx
where

é(x) =

It is easy to show that @, (x) is bounded. Then { @, (x)}
has at least one limit. However we could not show directly
that { @, (x)} has a unique limit. For instance, we have

By(x) = <( T AN e ’) ):N[I + 0( - )]

where

lim @, (x). (10)
N—w

Fy(t)=1t2— 71\,— ﬁ log cosh[2(8))* + Bh,], (12

i=1
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ZBJ X 2 172
Ay@)=1-— ~ Y, sech®[2(8] )%t + Bh,]. (13)
i=1

F,,(¢) has at least one minimum and at most N + 1 minima
which are assumed to be attained at ¢, where / = 1,2,...M
with 1<M<N + 1, and are denoted Fy(t,) = Fy(t,)

= . = Fy(ty,). Ay(t)) is positive and bounded. ¢, is a func-
tion of {h,h,,....h 5} and determined by the following
equation:

t— W;m ﬁ tanh[2(87)"%, + Bh,) =0.  (14)

i=1
One of the annoying problems is the convergency of ¢; as
N> ow.
By considering » replicas of the system, we calculate
@ (n) for positive integers # and obtain

Y(n) = lim Py(n)
N—oowo

{e = "2"(cosh"[2(B])" %t + Bh 1)},

(15)
where{Q (4 ))>denotes the average with N = 1 defined by (6).

As mentioned previously,*” (x) for real x > 0 is in general
different from ¢ (x).

Now let us prove that ¢ (x) = ¥(x) for x > 0, though it is
clear for x = 0. First we find the sequence of the functions
{ ¥y (x)} for x > 0 which converges to ¥(x) as N—oo;

¥y (x)

o s N 1/N
= < f dre =N ] {27 cosh*[2(87)" + Bh,.]}>
— o i=1 N
(16)

/N

= max
— oo <I< o

= [chw dte N 2N ( cosh*[2(BT)"*t + Bh ])N]

17
Consider the sequence { Sf/N(x)] defined as follows:
Vy@) =¥ T I)/9 ). (18)
We have
¥, (x)<e™ 2*(cosh*(Bh )), (19)
and by the Schwarz’s inequality applied to (17)
Yyx)<Py (). (20

Then { &, (x)} and { ¥, (x)} converge to a unique limit
which is expressed in the following two ways by using ex-
pressions (16) and (17), respectively:

. S (1 - 172 nFup\ VN
w09 = lim (5 (- xay(e) e )"
X [1+ O(1/N *x)] @1
= max fe="2%(cosh*[2(BT)’t + Bh 1)}.(22)

where F, () and 4 (¢ ) are given by (12) and (13). ¢, satisfies
Eq. (14). Because 4 (1)) is positive and bounded, we have
from (10), (11), (21), and (22)

() = d(x) = e 2% (cosh*[281) 2ty + BR 1), (23)

where ¢, is the value which maximizes the expression (22)
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and satisfies the following equation:
to = (BJ)V*{cosh*[2(B] ) *t, + Bh ] tanh[2(BJ] )" *t,
+Bh 1)/ {cosh*[2(BT ) *ty + Bh 1). 24)

Thus we have shown above that { @, (x)} for x>0 con-
verges to the unique limit. This is equivalent to the existence
of the thermodynamic limit. By virtue of the Vitali’s theo-
rem, { @ (2)} converges uniformly to thelimit ¢ (z) as N— w0
for all zeD; hence ¢ (2) is an analytic function of z for all zeD.
This fact warrants the transformation of Eq. (7) to Eq. (9).
Thus we obtain the free energy as follows:

— Bf = — BJmi + log2 + (log cosh(2BJm, + Bh)), (25)
where m satisfies the equation
m, = (tanh(2BJm, + Bh)). (26)

m, is the configurational average of the magnetization. The
Edwards—Anderson order parameter m, is expressed by

m, = (tanh’(2BJm, + Bh)). @n

According to the method described in this note, the
obtained results are also correct for the random field which
distribution assures the uniform convergence of the integral
(Z5,({AD) y for z in any finite region contained in D.

Finally we shall discuss the phase boundary. When p(# )
takes the uniform distribution U ( — 3'24,3'"20), the ob-
tained phase diagram is similar to the one for the Gaussian
distribution N (0,0°) given by Schneider and Pytte.’ For
2J /o < 3'2, there is no ferromagnetic phase. The phase
boundary of the second order phase transition between the
phase with m, = 0 and m,5~0 and the one with m,540 and
m,7=0 is given by

2 /o = 32 coth(3'2Bo). (28)

On the other hand, when p(# ) takes the form given by (3)
with ¢ = 1, the phase bounday of the second order phase
transition is given by

2J /o = cosh*Bo/fo, 29)
up to the point 2J /o = 3/2cosh ~ ‘(%)”2 =2.278 and

kpT /o = 1/cosh ~ ‘(%)‘/2 = 1.519 which is the tricritical

point. Below this point, we have the phase boundary of the
first order phase transition which is determined by Egs. (25)
and (26) up to the point 2J /o =2 and k3T /o = 0. For

2J /a < 2, there is no ferromagnetic phase.
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The spectrum of the multigroup neutron transport operator 4 is studied for bounded spatial
regions D which consist of a finite number of material subregions. Our main results provide simple
conditions on the material cross sections which guarantee that (1) 4 possesses eigenvalues in the
finite plane; (2) A possesses a “leading” eigenvalue A, which is real, not less than the real part of
any other eigenvalue, and to which there corresponds at least one nonnegative eigenfunction ys,;
and (3) 4 possesses a “dominant” eigenvalue A, which is real, simple, greater than the real part of
any other eigenvalue, and whose eigenfunction ,, satisfies Yo >0 and fy5,,d’Q > 0. We give
examples to illustrate the results and to show that a leading eigenvalue need not be simple, nor its

eigenfunction(s) positive.

I. INTRODUCTION

The problem of determining properties of the spectrum
of the neutron transport operator has been considered by
many authors under varying assumptions on the type of me-
dium and the scattering process.!”” Nevertheless, certain
gaps have persisted, in particular regarding the existence and
multiplicity of an eigenvalue with greatest real part and the
positivity of its eigenfunction(s).

The purpose of this article is to combine some results of
Jorgens,? some more recent developments of Angelescu and
Protopopescu,’” and some new analysis to provide a fairly
complete qualitative description of the spectrum of the
multigroup transport operator 4 in a bounded, convex,
physical domain D.

The following description, due to Jorgens,’ provides the
starting point of our analysis. If o[4 ], the spectrum of 4,
contains points in the finite part of the complex plane, then
they are discrete and situated in a left half space, finite in any
strip B, <Red <f3,, and the generalized eigenspaces are all
finite-dimensional.

To describe our new results, we must make two defini-
tions. First, let a “leading” eigenvalue of A be one which is
real, which is not less than the real part of any other eigenva-
lue, and to which corresponds at least one nonnegative ei-
genfunction. Next, let a “‘dominant” eigenvalue of 4 be one
which is real, which is strictly greater than the real part of
any other eigenvalue, which is simple, and to which corre-
sponds a nonnegative eigenfunction {(x,{2) such that
SU(x,Q)d 42 is everywhere positive in D.

Then our main results, stated in physical terms, are as
follows:

(I) o[4 ] is nonempty if there exists at least one energy
group with self-scattering in some nonempty sphere
|x — Xo| <7pin D.

(ID) A leading eigenvalue of A exists if and only if o4 ] is

“'Work performed under the auspices of the U.S. Department of Energy.
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nonempty.

(IIT) A dominant eigenvalue of 4 exists if the condition
stated in (I) is met and if any neutron, occurring at any point
in D and in any energy group, has a positive probability of
(eventually) being scattered into any other energy group.

We also give examples to illustrate that a leading eigen-
value need not be simple, nor its eigenfunction(s) positive.

The specific problem of examining the leading eigenva-
lue of a transport operator has been considered previously by
Vidav’ and Angelescu and Protopopescu’ for the case of a
continuous energy variable which tends to zero and a strictly
positive kernel in the scattering integral. (Since the energy
variable tends to zero, the spectrum of the transport operator
contains a half-space,*” Red <A *, which is often called ‘‘the
continuum.”) Vidav’s analysis, which can be directly ap-
plied to the multigroup transport operator, shows that if
there exists an isolated point eigenvalue in the spectrum of
the transport operator (i.e., out of the continuum), then
there exists a leading eigenvalue 4, whose geometrical multi-
plicity is 1 and whose (single) eigenfunction is strictly posi-
tive in the interior of D. Angelescu and Protopopescu’ have
shown recently that for this problem, 4, is in fact dominant.
(Thus A, is simple and greater than the real part of any other
eigenvalue.) However, for technical reasons, this analysis
cannot be directly applied to the multigroup transport oper-
ator. [These authors’ use the continuity of the energy vari-
able to construct an integral operator which is (required to
be) completely continuous. For discrete energies, this con-
struction cannot be done.] In any case, our results are more
general because we do not require the kernel in the scattering
integral (which, for multigroup problems, is a matrix) to be
strictly positive.

In this article we formulate conditions on the multi-
group transport operator which specifically apply to the
class of problems for which a numerical calculation of the
eigenvalues (or, in particular, of the dominant eigenvalue) is
likely to be attempted. We do this because the multigroup
approximation is made basically for the purpose of comput-

© 1979 American Institute of Physics 1776



ing, and so there is little reason to allow more general types
of behavior in our analysis than is possible in a computer
code. Thus we require all of the cross sections to be piecewise
continuous (rather than, for example, square-integrable)
and the boundaries of the physical system and all of its mate-
rial subregions to be continuous. However, in order to apply
Jorgens’ results directly, i.e., without introducing extensions
of his theory, we allow the fluxes to be square-integrable.
Then the fluxes can be piecewise continuous, although they
need not be. However, we expect, but do not prove, that the
solution of an initial value problem with piecewise continu-
ous cross sections and a piecewise continuous initial condi-
tion will in fact be piecewise continuous.

1l. ANALYSIS

We wish to consider a bounded convex physical region
consisting of at most a finite number of different material
subregions, each having a continuous boundary.

Therefore, we require each subregion D,, 1<i</,tobea
bounded open set of points in Euclidean space such that for
any fixed x€D, |x — x| is a continuous function of x for
xedD; (the boundary of D;). We set

1

D= u lDi
and we require D, the closure of D, to be convex.

As a means of introducing the concepts relevant to our
study we consider, for the moment, an initial-boundary val-
ue problem. Then the time-dependent multigroup neutron
transport equation has the form

aiﬂ,y(x,ﬂ,t) =A(Wh01), M
t

where {(x,42,¢ )isa G X 1 vector whose gth component is the
neutron density for the gth group, and the multigroup trans-
port operator A4 is

A=T+K, (2a)
THx,0Q) = — (R 7)V(x,02) — V-, (x)£(x,02), (2b)

K f(x,Q) = JV-E(x,Q-Q’)-f(x,Q’)d 0", 2¢)

In these equations, xeD and Q€S (the surface of the unit
sphere). V is a G X G diagonal velocity matrix, whose gth
diagonal component is v,, the speed of neutrons in the gth
energy group. We assume v, >0, 1<g<G. Z,(x)isa G XG
diagonal matrix whose gth diagonal component is 7, (x), the
total cross section for the gth group at the point x. We as-
sume that each g, (x) is a nonnegative uniformly continuous
function of x in each subregion D;, 1<i<]. Z(x,u)isaG X G
matrix, each component of which, o, (x,u), is a nonnega-
tive uniformly continuous function of x and u for each subre-
gion and ue[ — 1,1]. Weimpose the following physically rea-
sonable requirement: If, at any point x,, there exists a , such
that 0, (Xo,t0) > 0, then o,y (Xoqt) > 0 for all ue[ — 1,1].

To the transport equations (1), (2), we adjoin initial
boundary conditions:

W(x,0,0) = h(x,Q) (x,2)eD XS, (3a)
W(x,0,)=0, xedD, Qn(x)<0. (3b)

Here n(x) is the unit outer normal at the point xedD.
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We require the initial condition h to be an element of H,
the Hilbert space of square integrable vector functions de-
fined for (x,Q)eD xS, with the usual L, norm

2

[1hil = [ggLLl"s@’ﬂ)sznd}x 7

We seek a solution ¥ of (1)—(3) such that for each ¢30, PeH,
ie.,

0<t < 0.

[1b[](#) < 0,

This solution exists and is given uniquely by’
‘b(x’ﬂrt) = E(t )h(X,ﬂ),

where E (¢ ): H—H is the strongly continuous semigroup
whose infinitesimal generator is A4, the transport operator
defined on a suitable dense subset of H. [One often sees the
descriptive notation E (t) = e ]

Let us define

a= inf g,(x),
1<g<G
xeD

7 = (maximum diameter of D )/(min v,)
= maximum escape time for an uncollided neutron,

and

C = the cone of vector functions in H, each component
of which is nonnegative (except on a set of measure
Zero).

We say that an operator is positive if it maps Cinto C.
Then the following two results are due to Jorgens”:
Theorem 1: E (t ):H—H is a positive operator for >0

and is a completely continuous operator for ¢ > 3.
Theorem 2: The spectrum of 4, o[A4 ], is discrete, situat-

ed in the half-plane Red<||K || — @, and finite in any strip

B <Red<B,. The generalized eigenspaces are finite-dimen-

sional. Let Aq, A, A,,- be the enumeration of o[A4 ]. Then

a{E (t)] consists of the points e plus possibly the point zero
for 0 <t < . The generalized eigenspace of E (t) corre-
sponding to the eigenvalue z is the direct sum of the general-
ized eigenspaces of 4 corresponding to all eigenvalues A such
that e*' = z.

Jorgens proves Theorem 1 in a manner which we shall
not discuss here, and then he proves Theorem 2 by using the
results that for ¢ > 37, o[E (¢ )] — {0} is discrete, the general-
ized eigenspaces are finite-dimensional, o[E (¢ )] has at most
an accumulation point at 4 = 0, and

olE ()] — {0} = {e'lAeol4]}.

Theorem 2 provides a general qualitative description of
of4 ]. In the remainder of this article we go beyond this result
to consider the existence of eigenvalues in o[4 ] and of lead-
ing or dominant eigenvalues, as defined in the Introduction.
In our analysis we shall make considerable use of the semi-
group E (¢ ) and its properties. The idea for this is due to An-
gelescu and Protopopescu’ and, of course, Jorgens.?

First we consider the existence of points in ¢4 ]. The
following theorem states that a sufficient condition for this is
that there be self-scattering in at least one energy group.

Theorem 3: For at least one energy group g;, let there
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exist an open set R C D such that g, g/(x,,u) > 0 for xeR and
pel — 1,1). Then o[A4 ] contains at least one point.
Proof: Let R, be a closed sphere contained in R,

0, = max g, (x)
xeD !
and

o, =47 min o, (xu).
XeR,
— l<u<l
Then the g, th component ¢, (x,£2) of the solution of the ini-
tial value problem (1)—(3) is greater than or equal to the
solution ¥(x,€,t) of the problem:
v

2 a2, 4
r xo(x)fw  (4a)

a
— = — ﬂo —_
Erid vALY —voy +

W(x,90,0) = A, (X, D)y (x), xeD, (4b)
P(x,Q,t)=0, xe6D, OQn(x)<0. {4c)
Here
1, xeR,
Xo(®) = {0, x¢R,,

is the characteristic function for R,.

Physically, problem (4) corresponds to a one-group, ho-
mogeneous self-scattering sphere surrounded by a pure ab-
sorber. In the Appendix, we show that if the initial condition
1s positive on a set of finite measure in R, X .S, then there exist
constants @ and b, a > 0, such that

inf | ¥(x,Q,1)d 22>ae®, t>7.
xeD,

Since ¢ is (pointwise) less than ¥, (x,92,¢), it follows that
W] ()>ke™, (5

where k is a positive constant. This shows that o[4 ] contains
a finite point; for, otherwise, ¥ would decay faster than any
exponential function, and this would contradict Eq. (5).
QE.D.

Next we show that there can exist problems for which
oA ] contains no points.

Theorem 4: If Z(x,u) = 0, then o[4 ] is empty.

Progf: X = 0 corresponds to a purely absorbing medi-
um. For any initial value problem (1)-(3), ¥(x,Q,r) = 0 for
t > 7, and so no solution of the form

‘b(x,ﬂ,f) = e/{ll///{ (X,Q)
can exist. Hence there can exist no points in ¢[4 ]. Q.E.D.

By using a similar argument, one can also show that
o4 ] is empty if all the components of 2 on and above the
main diagonal are zero.

In Theorem 3 we gave a simple condition for the exis-
tence of points in o[4 ]. In the next theorem we show that this
condition suffices for the existence of a leading eigenvalue.

Theorem 5: If o{A ] is nonempty, then it contains a lead-
ing eigenvalue.

Proof: Since o4 ] contains a finite eigenvalue A, then
E (¢) contains the nonzero eigenvalue e A for all ¢ > 0. Thus,
for > 37, E () is positive, completely continuous, and has a
point in its spectrum different from zero. A result of Krein
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and Rutman® now states that E (¢ ) has a positive eigenvalue
p(t), not less in magnitude than any other characteristic vec-
tor, and to p(t ) corresponds at least one eigenvector beC.

It follows that ¥ is an eigenvector of 4 corresponding to
an eigenvalue A,, which satisfies

et =p(t).
Since p(t ) > O for all 1, 4, must be real. Also, since p(r ) is not

less than the magnitude of any other eigenvalue of E (¢), it
follows that

le' | <p(t) = €™, Aeod],

and therefore Red <4, for all Aeo(4 ]. Q.E.D.

The next theorem states, in physical terms, that if the
hypothesis of Theorem 5 holds, then a sufficient condition
for the leading eigenvalue 4, to be dominant is that any neu-
tron which is introduced into the system at any spatial point
and in any energy group must have a positive probability of
eventually being scattered into any other energy group. This
condition is not necessary, as we show in Sec. II1.

Theorem 6: Let the hypothesis of Theorem 3 hold.
Then o[A4 ] possesses a leading eigenvalue A,. This eigenvalue
is dominant if the following condition holds: For each point
x*eD and any two energy groups g¥, g¥, there exists a se-
quence of integers

glng"'ﬂgn, 1<gl<G,

g=g g.=8&,
such that

Ty, (X*12) >0

and
max o, (xu)>0, 2<i<n—1
xeD
— Tl

Moreover, if these conditions hold, then the eigenfunc-
tion ¥, (x,42) is the only nonnegative eigenfunction of 4.

Proof: Let h(x,Q2)eC, and let us consider the initial value
problem (1)—(3) with initial condition h,

Since the hypothesis of Theorem 3 holds, there exists a
g; and a closed sphere R,C D for which o, , (x,) >0, x€R,.

By the assumed conditions on Z, it is clear that there
exists a time ¢,, 0<¢,< G, for which z//gl(x,ﬂ,to) is positive on
a set of positive measure in R; X S. The results of the Appen-
dix imply that

inf | ¢, (x,0,0)d*2>0, 1>(G+ Dr.
xeD, ‘

The g, th group neutrons thus act as a positive neutron
source which, by the assumptions on X, eventually feed all
other groups. This leads to the result

inf | ¢, (x,Q,0)d*2>m(t)>0,
xeD
lags G

It can also be shown that, for £ > 27, P(x,€,¢ ) is bounded. [In
fact, if the initial condition h(x,{2) is bounded, then ¥ is
bounded for £>0.] The method® is to write ¥ = Z°_ o,,
where 1, are the nth collided neutrons, and to show that ¥,
is bounded for n>2. Then, fort > 27,4, = ¥, = 0,and so P is
bounded. We shall not give the details here. However, this

t>2Gr. (6)
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result implies

sup J¢g(x’ﬂ,t )d m <M(t) <o, I> 2T. (7)
xeD

1<g<G

Equations (2c), (6), and (7) now give, for t > 2Gr,

vm(t )[ i iLlfag,(x,y)] <Kt (x,0,t)

j=1
G
s M@ S St,l‘pag,(x,ﬁ)] .
j=1
(Here Ky, is the gth component of K, and 1<g<G.) By the
assumptions on 2 originally stated in this section,
inf, o, (x,u) and sup, o; (x,u) are either both zero or both
nonzero, for all g, j, and x. Thus there exists a nonnegative
function y, (x) which is continuous in each subregion D, and
positive constants a,, B, such that

Big [l_zilsgpagxxm] @< ai [éigf%(x’ﬂ)] ,
and hence
@m0 ) <K (0B M (), ),
for all (x,@¥)eD X .S and ¢ > 2Gr.

Now let

ty=2Gt, ti=t,+ T,

m= inf m(t), M= sup M(t)

IS LIS
Then, for £,<<t,, ¥, (x,¥,¢) is bounded from above and be-
low by

£ OO (x, 01)<E Ox, 1), - 9)

where £, n =0, 1, satisfies

g;gg'“ + 0 TED + 0,0, WED = Yy, (102)

1<g<G, (8)

& é”)(x,ﬂ,to) = ¢ (x,90,5,), xeD, (10b)

& ;"‘(x,ﬂ,t )=0, t>t, x&dD, Qn<0, (10¢)
and

YO =apm, (11a)

P =B M. (11b)

Solving problem (10) at ¢ = ¢, gives
§§")(x,ﬂ) = y‘")fg(x,ﬂ),

where

e = [

(o}

d (x,02)

X (x — )

X exp[ — J V0 (X — s’ﬂ)ds']ds
(4}

and where d (x,12) is the distance from x to dD in the direc-
tion of — {2. Equation (9) becomes at ¢t = t,,

(@D ME (XD <Yy, Q1)< B0 M E (X, D).

Since apm >0 and £,>0, we have shown the follow-
ing: There exists a vector function £eC such that, for any
nonzero function heC, there exist positive constants a and 8
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such that
ak<E(t,)h<BE, (12)

where the operator E (¢,) is completely continuous. [The in-
equalities (12), of course, hold componentwise.] Three re-
sults of Krasnosel’skii'° now imply that ¢** is a simple eigen-
value of E (f,) which is greater than the magnitude of any
other eigenvalue and that the corresponding eigenfunction
1, is the only eigenfunction of E (¢,) in C.

1t follows directly that A, is a real simple eigenvalue of 4
which is strictly greater than the real part of any other eigen-
value of A. The corresponding eigenfunction v, _is the only
eigenfunction of A which lies in the cone C, and the initial
value problem with initial condition h = v, has the solution

¢(X?Q9t) = eAOttp/{o(xan);
which satisfies Eq. (6). Therefore,

f\b L6022

is a vector function of x which is everywhere positive in D.
This completes the proof of the theorem. Q.E.D.

To illustrate this theorem, we shall consider some sim-
ple generic examples. For a homogeneous, two-group
medium,

==(; )

does not satisfy the conditions of the theorem because group
2 neutrons cannot scatter into group 1. (In this and all the
following examples, the 1’s can be replaced by arbitrary posi-
tive numbers.) However,

=(; )

does satisfy the conditions of the theorem, as does any #-
group 2 with all positive components. Also, in G groups,

0 — — — — —1]
1 0 0
01 0 |
| N |
N |
| N
0 N |
0 0——e——_0 1 0

satisfies the conditions of the theorem because after G — 1
collisions a neutron in any group will scatter through all
others.

Now let us consider a two-group region D consisting of
two material subregions D,, D,, for which

1 0 11
n-(; ) == 1)
! 1 1 : 11

In D, group 2 neutrons cannot scatter into group 1. Howev-
er, any group 2 neutron in D, can be scattered into D,, where
it can undergo a collision and then be scattered into group 1.
Therefore, the conditions of Theorem 6 are met. They are
also met for

1 0 11
2 f— =
' (0 1)’ % (1 1)

Edward W, Larsen 1779



but not for

0 0) (1 1)
2‘“(1 1 %= 1 1

since a group 1 neutron in D, will stream out of D or be
absorbed in D, (but in either case will not be scattered) if it
travels along a path which does not intersect D,.

The following (and final) theorem provides some sim-
ple relationships between the leading eigenvalue of the mul-
tigroup operator A4, defined in Egs. (2), and the leading ei-
genvalues of the G one-group operators 4,, 1<g<G, defined
by

4, f(x0) = — @Y, f(X,) — 0,0, (x,8)

+ ugfagg(x,n-n')f(x,n')d 20",

(These operators are obtained by setting to zero the off-diag-
onal components of Z, yielding a G-group diagonal trans-
portoperator 4 ‘ whose gth diagonal component is the opera-
tor 4,.]

Theorem 7: Let A, be the leading eigenvalue of 4 and
Aqg be the leading eigenvalue of 4, . (If any one of these
operators has no finite spectrum, we define the dominant
eigenvalue to be — o0.) Then

max Ay, <4, (13)
1<g<G
Moreover, if 2 is a lower triangular matrix, i.e., o; = O for
i <j, then
max Ay, = A, (14)
1<g<G

Proof: Let X' be the matrix whose diagonal components
are equal to those of Z and whose off-diagonal components
are zero. Let A ' be the transport operator 4 with 2 replaced
by £'. Then the solution ¥ of the initial value problem (1)—(3)
is greater than or equal to V', the solution of the same prob-
lem but with X replaced by 2, provided the initial condition
heC.

Let Ay, = max, .. Ao and let ¢, (x,2) be the corre-
sponding eigenfunction. Then the vector h with ¢; as its
kth component and all other components zero is an element
of the cone C, and the solutions ¥ and 1’ of the stated initial
value problems with this particular h satisfy

G Q> Y1) = €Y, (x,0D).

Aot

Therefore, ¢, (and hence 1) decays no faster than ¢™*, and
s0 Ay 2Aqy -
Next, we let T be lower triangular. If 4, = — o, then,

by Eq. (13),4¢, = — w0, 1<g<G, andso Eq. (14)holds. If 4,
is finite, let 1, be the corresponding eigenfunction in C, and
let ¢, . be its first nonzero component. Then ¢, ; >0, and
since X is lower triangular, 4, is the dominant eigenvalue
(and ¢, , the corresponding eigenfunction) of the operator
A, . Thus, A, = A, , and Eq. (14) then follows from Eq. (13).
Q.E.D.

11l. EXAMPLES

Here we present some simple examples to show that if
the conditions of Theorem 6 are not met, then a dominant
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eigenvalue A, need not exist, i.e., A, need not be simple and its
eigenfunction(s) need not be positive. On the other hand, we
also show that if these conditions are not met, then a domi-
nant eigenvalue A, can exist.

Let D be a finite convex domain, and let A, be the domi-
nant eigenvalue and ¢, the corresponding eigenfunction of
the one-group transport operator

AYxQ) = — QTYE,N) — Y(x,Q) + i

X f;b(x,ﬂ')d L

with vacuum boundary conditions. Let 4 be the two-group
operator

HE0)

zm(x,m] )
di(x, Q)

,(x,42) H(%,41)

1 (Cn C12)f [ (X, Q')] '
—_— dl’,
+ 47 \C; C»n U (x,

defined in D, also with vacuum boundary conditions.
First let us take

(b Y
) \b e/
Then A4 corresponds to a slowing down medium, for which
the scattering matrix X is commonly lower triangular. Here
(and for all lower triangular X) the conditions of Theorem 6
are not met because group 2 neutrons cannot scatter into
group 1.

If a<c, then the dominant eigenvalue of 4 is A4,, with the
nonpositive eigenfunction

b= ()

If a = c, then the dominant eigenvalue of 4 is still 4,, but the
generalized eigenspace is now two-dimensional. This space
is spanned by

b= () e w- ()

where f(x,82) is any solution of the problem

1 apy
Gl )= (=P [w,d0

- @)

and where P is the projection operator
SR Q)(x,Q)d 2 d X’

Pg(x,02) = ¢, (x,02 ‘
B =D

For b >0, only ¥, is an eigenfunction; ¥} is a generalized
eigenfunction satisfying (1. — A WS = bas; , where a, is
a constant. It is clear that ¢, is nonpositive, but little can be
said about the positivity of 5.

Now let us take

Coa=C )
Cn  Ca N a b/’
with 0 <a and 0<b < ¢. Again, the conditions of Theorem 6

are not met, but now 4 does possess the dominant eigenvalue
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Ao, with eigenfunction

Yy, = (?) ’

where ¢ satisfies the equation

(o — ADE (6,Q) = QTE + (1 + AE — TI:? fgd 10

=2 j,ﬁ d’
47 ¢
with vacuum boundary conditions. Since b < ¢, the operator
acting on & corresponds to a subcritical medium, and since
¢, d 32’ >0, the “source” driving £ is positive. Hence § ex-
ists and is positive, except, of course, on the boundary for
incident directions, and thus this is also true for ¥, .

APPENDIX

In this appendix we prove two lemmas pertaining to the
analysis in Sec. II. Lemma 1 is required for the proof of
Lemma 2, and Lemma 2 is used directly in the proofs of
Theorems 5 and 6 in Sec. II. The lemmas are:

Lemma 1: The one-group transport operator 4 for a
homogeneous, isotropically scattering sphere R, has a real
eigenvalue 4,, to which corresponds an eigenfunction
¥, (x,9) satisfying

(a) ¥, is continuous and bounded in R, XS,

(b) inf f%(x.n)d 220,
XER,

(c) ¥, (x,2) > 0 for all x,Q such that (x — e2)eR, for
some € > 0.

Lemma 2: Let D be the convex domain described in Sec.
I1, and let o, (x),0, (x) be nonnegative, piecewise continuous
functions of x with ¢, (x) > 0 on a set D, C D of positive mea-
sure. Let i be the solution of the problem

d
E'//_Aw’

Af(x,Q) = —v-Vf (x,02) — vo, (X)f (x,)

vo(x)
+ Jf(x,ﬂ’)d 0",
4r
¢(X,Q)0) =h (x,ﬂ),
P(x,0,t)=0, xedD, Qn<O0,

where A is nonnegative in D X.§ and positive on a set of posi-
tive measure in D, X .S. Then there exists a positive constant a
and a real constant b such that

inf | p(x,0,t)d 2 >ae®, t>3r.
xeD

Proof of Lemma 1: Van Norton® has shown that 4 pos-
sesses an infinite number of real eigenvalues. Thus by Theo-
rem 3 (Sec. 2), A possesses a real eigenvalue A,, to which
there corresponds a nonnegative eigenfunction ¢, . Since
the sphere is homogeneous, ¢, is continuous? and hence
bounded. The scalar flux

po0) = [y xd 0
is nonnegative and satisfies an integral equation with an ev-
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erywhere positive kernel’; hence,
inf p,; (x)>0.
xeR,

Finally, let o, and o, be the (constant) total and scatter-
ing cross sections, and d (x,Q2) denote the distance from x to
JdR, in the direction of — Q. Then

wx = |

(4]
and thus ¥ > O for all (x,{2) such that d (x,2) > 0. This com-
pletes the proof of the lemma.

Proof of Lemma 2: Functions in B = L,(D X.§') belong
to equivalence classes, i.e., 3, and 1, are in the same equiv-
alence class if ||, — ¥,|| = 0. This means that
h(x,2) = ,(x,Q) for all (x,02)eD X, except for a set of
measure Zero.

Consider an initial value problem for the transport op-
erator A, with two initial conditions A, and 4, in the same
equivalence class. Let the solutions be ¢, and ¢,. Then
v, =E(@)r,i=12,andso

h— = E@)h — hy),
whose i, — h, = 0, except for a set of measure zero.

For t> 37, E (¢ ) is completely continuous, and hence is
an integral operator.’ Since an integral operator acting on a
function which is zero (except for a set of measure zero) is
zero, it follows that

h(x,0) = (x,0D), (x,MeD XS,

Now let us turn to the problem at hand. By the above
remarks, we can assume 4 >0 on an open set in D, X .S. We
write

v=v+ Y,
where 20 are the uncollided neutrons. Since the source which

feeds ¥ is isotropic, there exists a sphere R,C D, and a
(small) time ¢, for which

d (x,92)
e~ (wa, + Ay)s

s p(x — sQ)ds,
47

t>37.

inf & (x,Q,t)>m,>0. (A1)

xeR,
=1

Now let z,and ‘Zz,, (x,2) be the dominant eigenvalue and
eigenfunction, described in Lemma 1, for the following
transport operator «/,, defined on the sphere R,:

Ao f(R) = — vV TFX,D) — vo, F(6,D) + :”’
T

x ff(x,n')d 22", xeRs,

o, = info(x).

xeR,

o, = supo,(x),
xeD

Since ¢, is bounded, there exists a positive constant m, such
that m,> m,¥, (x,92), xeR,. Then by Eq. (A1),

ﬁ’\ (x,ﬂ,to)>m11/~/zo(x,ﬂ), xeR,.
Therefore,

Tx,00)>¥(x,0¢), xeD, t>t,
where ¥ is the solution of the problem
a

— V=Y,

xeD, t>t,,
£y >l
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Lf(x,0) = — vQ-Yf (x,9) —vo, f(x,0)
Vo Xo(X) NPT
+ Tff(x,ﬂ)d 2,

Y1) = 1, 1, (X, Q)0 (x), xeD

P(x,Q,t)=0, xedD, Qn<0, t>t,

and where y,(x) is the characteristic function for R
1, xeR,,

Xo(x) = [O, x¢R,.

In this problem, D consists of a homogeneous, self-scat-
tering sphere R, surrounded by a pure absorber. For xeR,,
we have by construction

P(x,Q,) = m,, (x,02)e™".

For x¢R,, ¥ can be constructed by tracing characteristics. If
) is such that the line x — 52, s> 0, does not intersect R,,
then ¢(x,0,7 ) = 0. If theline x — 52, doesintersect R, and if
dy(x,02) is the minimum value of s for which x — s, inter-
sects dR, (the surface of R,), then ¥(x,0,t) = 0 for

t,<t <t + v'dy(x, ), while, for £>¢, + v'd(x,(2), we get

w(x,0,t) = ml[exp[ - (a, + —zvi)do(x,ﬂ)]

X, [x — dy(x,2)Q,2] }e’l"’. (A2)
Therefore, for t > t, + 7, we can write
U(x,Q,t) = my, (x.Q)e™, (A3)

where ¢, = ¢, for xeR, and for x¢R,, ¥, is either zero or
defined by the term in braces in Eq. (A2), depending on
whether the line x — 582, s > 0, intersects R,.

For any xeD, there exists a nonempty sector of S for
which ¢, (x.€2) > 0. Therefore,

inf |4, (x,02)d 2 =m,>0,
xeD

and so Eq. (A3) gives
inf | ¥ (x,90,t)d 202 >m me™,

xeD

t>27,
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and since ¥ = ¢, + ¥> ¥, it follows that

inf f¢(x,ﬂ,t 2 >mme™, t>2r,

xeD
This completes the proof of the lemma. Q.E.D.
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transport operator is necessarily greater than the real part of
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Kuang-tien, in “The Spectrum of Transport Operator with
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Existence of quantum field theory is considered for the four-dimensional ¢' model. The
mathematical tool of contraction mapping principle is used to investigate the question of existence
of solution for the infinite system of coupled equations for the Green functions of the theory in
the Euclidean region. Formulation of the problem for this model with one divergent part is
interesting in itself and provides the first attempt towards the study of other renormalizable
quantum field theory models with an infinite number of divergent graphs. For sufficiently small
values of coupling constant, the theory has a unique solution for the truncated system of equations
for the Green functions. However, for the complete, infinite set of equations, the Banach fixed

point theorem admits a solution only when the coupling constant tends to zero. Possible reasons

for such a result are discussed.

1. INTRODUCTION

A question of fundamental importance in quantum
field theory is the existence of exact, nonperturbative solu-
tions for the Green functions. In fact, even with the renorma-
lization procedure and the remarkable experimental success
of quantum electrodynamics with the perturbation expan-
sion, still one does not know whether the set of equations
describing the theory is self-consistent and whether an exact
solution, in principle, exists. These problems, however, are
highly nontrivial and, therefore, any partial result in any
other field theory models is of great interest. In this work we
confine ourselves to this question for the first nontrivial
model in quantum field theory with divergence—the four-
dimensional ¢ * theory. The characteristic of such a theory is
that it is super-renormalizable, i.e., has only one (self-ener-
gy) divergent diagram. We shall exploit the powerful math-
ematical technique of principle of contraction mapping or
Banach’s fixed point theorem' and try to find conditions un-
der which the full, as well as the truncated, system of coupled
chain of equations for the vertex functions of four-dimen-
sional (4 /3)¢ * theory has solution in Euclidean region of
variables.? In doing so, however, we find that while the trun-
cated system has a unique solution for sufficiently small val-
ues of coupling constant A, the complete set of equations for
the Green functions has a solution only if the coupling con-
stant of the theory A tends to zero. Possible reasons for this
result may be the majorization of the integrals and the esti-
mates of the inequalities which appear and/or the definition
of norms for different functions. On the other hand, it is
known that such field theories as (4 /3)@ * have zero radius of
convergence in A, so that it could appear very hard to use the
contraction mapping method, however the norms are al-
tered, to make such an iterative solution well-defined. Thus
it might be interesting to indicate how other fixed point ap-
proaches such as topological degree’* may be of value for
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such problems. In fact, this method has been preliminarily
discussed in the field theory context.’ A more detailed analy-
sis of these points is apparently necessary and very impor-
tant to carry out. In particular, some good reason, such as a
counterexample, could be looked for in order to rule out the
possible expectation that contraction mapping will always
fail whenever there is zero radius of convergence of the itera-
tive solution.

The methods of functional analysis have been previous-
ly used to discuss the existence of solutions of equations in
different branches of theoretical physics.*° In this approach
an equation is considered as an operator equation in the Ban-
ach space. Such a method has been first suggested and ap-
plied to the equations of statistical physics by Bogoliubov et
al.® Subsequently, this approach was applied to different
nonlinear equations: to the Chew-Low equations,’ to the
equations for the 7 scattering off a static nucleon,® to the
dispersion relations,’ and to the equations for the Green
functions of the ¢ * theory."® In Ref. 10 the equation for the
two-dimensional ¢ % model were considered, and it was es-
tablished that Banach’s fixed point theorem' allows the exis-
tence of solutions only for the zero coupling constant. The
present work is one step towards a realistic model in four
dimensions. Here the occurence of the divergence and its
extraction and separation from the quantities which enter
the coupled equations is an interesting technical problem
and necessary for treating any renormalizable quantum field
theory with divergences.

Section 2 contains the derivation of infinite set of coup-
led nonlinear integral equations for the Green functions
from the properties of Feynman diagrams. In Sec. 3 princi-
ple of contraction mapping is introduced and exploited for
our problem. Section 4 deals with the final results concern-
ing the conditions for existence of solution for Green func-
tions. In Appendix A we give the analytical derivation of
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FIG. 1. Graphical relations between the vertex function F, which is the

n

sum of all one-particle irreducible diagrams and the function L, which is
the sum of all connected diagrams.

infinite set of coupled equations for ¢ * theory from the
Schwinger equation in functional derivatives. Appendix B
contains the derivation of some inequatities for the integrals
used in Sec. 3.

2. DERIVATION OF THE SET OF COUPLED NONLINEAR
INTEGRAL EQUATIONS FOR THE GREEN FUNCTIONS
OF THE ¢ ° THEORY

Let us consider the model described by the interaction

Lagrangian
A s

j int 3 ¢) ’
where A is the coupling constant, g-scalar field with mass m.

Usually, the coupled system of equations is derived ana-
lytically using variational derivatives with respect to exter-
nal sources.'!'? Here, we give a transparent derivation of
these equations based on the properties of Feynman
diagrams."’

The vertex function F,(x,,...,x,) is the sum of all one-
particle irreducible diagrams with » + 1 external lines. To
obtain the coupled system of equations for F,, we introduce
the functions L. The function L,{x,y;z,,...,2,) is the sum of
all connected diagrams with the following property: if by
removing one line the diagram becomes disconnected, then
the vertices x and y appear in different parts of the diagram.

One can see that in @ * theory each one-particle irredu-
cible diagram can be built out of diagrams of sort L, as shown
in Fig. 1a. Conversely, each diagram of type L can be built
out of one-particle irreducible diagrams and diagrams of
type L in one of the ways depicted in Figs. 1b, 1c, and 1d.

These relations among the diagrams bring to the coup-
led system of equations for the functions F',, and L, defined as

F(q1-4,)

= fexp(i i qix,-)F,,(O,x1,...,x,,)dxl---dx,,,

i=1
L (p:g1ss,)
- f exp[i( $ qfx,~+py)]1;,,(0,y;x1,.u,x,,>

i=1

X dydx,---dx,,.
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As seen from Figs. 1b, 1¢, and 1d, it is convenient to
introduce for all n>>0 the function B,

n Grseensl s
B (pgrson) = 3 p(—l—"—)
K=o NGk ety

E si{—p— Ef: 1 GisG1s-oqx)
[(p+ 2:(: 1 Qi)z + m2]

— k
><L,,_k(p+ zqi;qk+1,...,qn), @.1)

i=1

and for n>1, 1<k<n, to introduce D,

%

(p+a)y+m?

X Ly (P + GGl 15k 1 1)
2.2)

Here p(q,,....9.,/9« . 1----4,) Means summation over all the
divisions of variables ¢q,...,g, into two groups with & and
(n — k) elements. Graphical representations corresponding
to B, and D, are shown in Figs. 2.

Now the relations given in Figs. 1a— 1d among the dia-
grams of the ¢ * model can be presented in the form of fol-
lowing equations:

L(pigir-dy)
=F,. 1( -p— >4 ,»,qp---,qn) + B(P3q15--45)

i=1

an(P;qll""qn) =

+ Y Dau(psgi4y) (2.3)

k=1
for n>2, and

Li(p:g) = F( —p — g.9) + Bi(p;q) + D\ (pg) + 24, (2.4)

Ly(p) = Fi(p) + By p), 2.5)
F (g1,

A d*p

et (P HmI(p+ 2 g) +mP]

X [F + 1( —-p— >4 ,-.qp--',qn) + B, (pigys-40)

=1
+ Y D,,k(p;ql,--.,qn)] (2.6)
k=1
for n>»2, and
A d*p

F.(q) =
@ em*J (PP +mH(p + 9 +m?] .
212 dp
B/(p; D,,(p;
X {B\(p;q) + n(po) + (277_)4 p2+m2
gy qn

q, e A SJ% q it Oy
...... ] fea,
p QCu—= 5 p+a, &:5
b)

FIG. 2. Graphical representation for the relations of introduced functions
B,and D, with £, and L,.
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x[ L ~ - 21 2]+y(/l). 2.7
(p+97+m pr+m

The function F, coincides with the mass operator. Thus
in Eq. (2.7) subtraction is performed. As seen, the introduc-
tion of functions B, and D, allowed us to separate in Eq.
(2.7) the term corresponding to the only divergent diagram
of ¢ * theory. The term u£(4 ) corresponds to the finite renor-
malization of mass.

Let us recall that we are considering the functions F,,
L,, B,, and D, in the Euclidean region of the variables. The
continuation to Euclidean region is done by means of a Wick
rotation.' Thus the internal propagators 1/( p> + m?),
which enter our expressions, do not have singularities.

3. PRINCIPLE OF CONTRACTION MAPPING (OR
BANACH’S FIXED POINT THEOREM) AND ITS USE FOR
OUR PROBLEM

The system of equations (2.1)—(2.7) can be written in
the form

¢ =Agp,
where @ is the set of functions F,, L, B,, D, and A is a
nonlinear operator in the space of functions ¢. This allows us
to investigate the question of existence and uniqueness of the
solution of system (2.1)~(2.7) with the help of the contrac-
tion mapping principle or Banach’s fixed point theorem (see,
e.g., Ref. 1). According to this principle, the equation
Ag@ = @ has a unique solution inside a sphere of radius R in
the Banach space ||@|| <R, if there exists a real number « with
0<k < 1, such that for all the elements ¢, and g, of the Ban-
ach space (i.e., ||@,||<R and ||@,||<R ) the following condi-
tions are fulfilled:

4@ lI<R, ||A@,|I<R,
4@, — Ag,||<«llg, — @.l|-

In order to use the contraction mapping principle to the
system (2.1)—(2.7), let us introduce our norm as®

I 1| = max{ sup 1, sup 1}, sup 13,1, sup 10,4,

where
—_ _ 1 n _—
[Full = £ 'sup ;( > q,-‘ +m)Fn(q1,---,qn)
i=1
for ny2,
o~ _ q,| +m -
I =7 sup| L2 By,
m(q; + m®)
—_— _ 1 —~
”Ln” =1n ]sup _‘;Ln(Pﬁp---’q,.)
m
for n>1,
IEol = 1 'sup| —2LET o),
m(p® + m°)
_ m
”Bn” =bn lsup L’Z'|_~1;‘—Bn(p;qh"-)qn)
m
for n>1,
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_ 1

1Boll = b5 sup ;Bo<p)|,
(p+a) +m
1Dull=d, *sup| LIV I (g
m
for n>2,
and
_ p+4q

”Dn“ =d, lsup ‘(_Tn‘;l_(Dn(P;ql)‘,

withf,, /., b,, and d, some normalization constants (real and
positive) to be defined later and |g|=(g%)'"*.

Using the inequalities

( pzd;pmz[(p+q;2+m2 _pz—:mz} <a|—;]1l,
(3.1)
f a4l
(12 +md) - k)P + m?1{ — p)* + m?]
B 3.2
S k] G2
J d*l
A+ m) [~k +m? 1| —k | +m)
Y 3.3
St k| ©-3)

the derivation of which is given in Appendix B, we obtain the
following sufficient conditions for the existence and unique-
ness of the solution of the system (2.1)-(2.7) in the region
lplI<R:

2R Y Chfyyl,_ kb, for n30, (3.4)
k=0
where C¥ = nl/ki(n — k),
-zéln,1<xdn for n>1, (3.5
m
fnar+b,+nd <kl for n>2, (3.6)
fi+b+d+ —Lj‘k-<11, 3.7
m

1+ 2bo<d, (3.8)
A ((fuy 4 by +nd,Bl<kf, for n32,  (39)
Q2m)*

472

AY (b, +d)+ @y @],
@2m) Qm)*Rm Rm
(3.10)

4. DERIVATION OF FINAL RESULTS

Since the normalization factors f,, /,, b,, and d,, intro-
duced through the definition of norms in Sec. 3, can be cho-
sen arbitrarily, the system of inequalities (3.4)~(3.10) can be
considered as equations with respect to the unknowns f ,, /,,
b,, and d,. In this way, the use of contraction mapping prin-
ciple to the system (2.1)—(2.7) has brought us to the question
of existence of solution for the system (3.4)—(3.10) in the
regionf,>0,/,>0,b6,>0,d,>0,and R > Q.

Let us first consider the truncated chain of equations
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(2.1)-(2.7), i.e., consider only those equations, in the left
hand side of which are contained functions with the number
n such that n<N. The functions F, '~ + 1 Which appear in the
right-hand side of these equations we put equal to zero.
Thus, the truncated system has solutions if the system (3.4)—
(3.10) is compatible for n</N. We show that for sufficiently
small values of A this is the case. For this matter we shall
assume that u(4 )—0 for A—0. This assumption can be done,
since in the perturbation theory z(4 )~cA ? in the neighbor-
hood of A = 0. Notice, however, that one can in general drop
the term u(4 ). In that case the vertex functions would corre-
spond to a field with the renormalized mass m + dm.
So,let R and /, (O<n < V) bearbitrary real positive num-
bers. Then one can choose b, and d,, (0O<n<N) such that

b, + nd, <l
2b,<ix I,

for n>1,

Now it is possible to choose f,, (1<n <N ) sufficiently small in
order that inequalities (3.4), (3.6) and (3.8) are fulfilled and
also f, < 1/,. In the left-hand side of inequalities (3.5), (3.9),
and (3.10) there stands the factor 4. Since we are working
with the truncated system of equations, then (3.5), (3.9), and
(3.10) form a finite system of inequalities. Therefore, for suf-
ficiently small A these inequalities will be fulfilled. The in-
equality (3.7) is also satisfied, since f , + b, + d; <> /,. Thus
we have shown that the truncated system of equations (2.1)-
(2.7) has a solution for sufficiently small values of 4.

However, the introduced method does not allow us to
prove the existence of solution of the complete system (2.1)-
(2.7) for A5£0. We can show that the system (3.4)—(3.10)
becomes incompatible for N = .

Indeed, from ineq. (3.9) we have

[Ay/Qm)*1b, <f “4.1)

[Av/ Qo <f 0 4.2
since O<k < 1.

From (3.4) we have

Rn(n — 1), L<b,. 4.3)
Combining these inequalities, we obtain

Rn(n — DL [Ay/Qm)*1%b, <b,, (4.4)
from which for all n>2

Rn(n — DLIAv/Q7)*1* < 1. 4.5)

This is possible only for 4 = 0.

We have demonstrated that the system (3.4)—(3.10)
with N = «is incompatible for the values of coupling con-
stant A=£0. Thus the principle of contraction mapping as
used in our approach, allows for the existence of solution of
system of equations (2.1)~(2.7) for the Green functions of
(A /3) @ theory only for 4 = 0.

As we have already mentioned in the Introduction, the
existence of solutions for the Green functions in quantum
field theory is of great importance. The use of a powerful
mathematical tool of Banach’s fixed point theorem gave us,
however, a unsatisfactory answer, as mentioned above. Pos-
sible (although not necessarily so) reasons for that may be
the estimates of inequalities and majorizations and/or the
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definition of norms used for the Green functions. A more
detailed analysis of these majorizations and introduction of
other norms and, as well, other fixed point approaches like
topological degree*™ are therefore quite necessary and might
lead to spectacular results. It is known that field theories like
(A /3) @ * have zero radius of convergence in A. So it could
appear very hard to use the contaction mapping method,
however the norms are altered, to make such an iterative
solution well defined. Thus it would be very interesting to
look for an argument (such as a counter example) in order to
rule out the possible expectation that contraction mapping
will always fail when there is zero radius of convergence of
the iterative solution. For other quantum field theory mod-
els like QED with an infinite number of divergent graphs the
situation is more complicated. We have chosen ¢ * theory
because of presence of only one divergent diagram which
simplifies the analysis.
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APPENDIX A: FUNCTIONAL EQUATIONS FOR THE
GREEN FUNCTIONS AND EQUIVALENT INFINITE
SYSTEM OF EQUATIONS

The field theory with @ " interaction: Consider the in-
teracting meson field described by the Lagrangian

L =L+ L im (Al)
where

o= 31@p /3x)* — m?p?]
and

L =@/ " (A2)

is the interaction Lagrangian. All the operators here and
further on are taken in the interaction representation.
Lagrangian (A1) corresponds to the equation of motion

U+ mHp ) =jx) =gp "~ '(0) (A3)
and to the scattering matrix
S= Texp[i f J&X)p (x) dx], (A4)

where T 'is the operator of chronological ordering. By defini-
tion, Green functions are called the vacuum expectation of
the chronological product of operators. In particular, the
one-particle Green function is given as

G (x,p) = (1/5,){0| Ty ()¢ (»)S | 0),
where S; = <0|S'|0>.

Let us derive now functional equation for the Green
function G (x,y). For this matter, introduce an auxiliary
source which corresponds to a current J (x) and interaction
energy J (x)@ (x). Then (A3) and (A4) will take the following
forms:

(A5)

U+ mIHp ) =gp" ') + J (x), (A6)
S= Texp{if [JO) + T ()] (x) dxy. (A7)
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As seen, the Green functions become functionals of J (x), and
one can write for them equations with functional derivatives.
Multiplying by (1/S,) @ (x)S both sides of (A.6) from right
side, acting with the operator 7, and taking the vacuum ex-
pectation, we get

L o17@ + m>)e (s |0)

0

- Loor
S

0]
Operators O and 7 do not commute and one has for them

d d
T =—o = — [Tk —5(x —p). (A9)
[ ) (z)‘P( )¢(y)] [2)[ P X (P] (x—»-(

gp" 'x) +J ()@ (»)S [0). (A8)

From (A5), (A9), and (A8) one gets

O+ m)G () — Sig«)l To" ()@ (S |0)

—JxN e () =
where
(px) = L (0]@ (x)S ]0).
So
From the relation

A
r() =iT[e®)S],

which follows from (A7), one has
0| Te "~ '(x)p (S |0)
1 5n-—2
= ——— (0| T S |0
EEEN YT (0| Tp ()@ (»)S |0)
1 5n-~2
= —[G 56] -
7 g iy [0S

Thus, finally one gets the equation for the Green function as
g 611 -2
U+ mHG (xp) —
Y "=28, 8" H(x)
—J XN @ (y) = —ib(x —y). (Al4)
Consider now the @ * interaction, i.e., the case n = 3, and for

further consideration let us introduce a function 4 (x,y)
equal to functional derivative of {(@(x)>:

‘S;j’ ((";> =i (x,) = iG (x) — il () (@ ().

WhenJ (x) = 0, thefunction G (x,y)and 4 (x,p)coincide. Re-
placing G by 4, Eq. (A14) becomes

—i8(x — y), (A10)

(ALl

(A12)

(A13)

[G (x)So]

(A15)

— ib(x — y).
(A16)

Notice also that the functional derivative of the Green func-
tion G (x,p) is equal to

[D +m? + zg——é(——) — 2g(p (x)>]A xy) =

5;(3) = 5 Ol Tp @ (e S |0)
- S—% (0| To () (1)S |0) 0| T (x)S |0)
= iK (x %) — G (x) (@ (). (A17)
1787 J. Math. Phys., Vol. 20, No. 8, August 1979

Infinite system of coupled equations: By substituting (A17)
into (A 14), one has eliminated the functional derivative and
has arrived at a differential equation. But then there appears
a new unknown function X (x,p;x), for which one needs an
additional equation. This can be achieved by taking the func-
tional derivative of (A 10) with respect to J (x) and using
(A12). Then in the equation there appears a new function
K (x,y;x,x). Continuing this procedure, we arrive at an infi-
nite system of differential equations for Green functions.
Thus the Schwinger equation in functional derivatives is
equivalent to an infinite system of coupled differential
equations.

Let us find this system explicitly. Multiplying Eq. (A6)
by S, 'S from the right side and taking the vacuum expec-
tation gives
O e ) =66 @0 +7 (x)

= g4 (x,x) + g{@ ()’ + J (x). (A18)

Further, it is more convenient to use Eq. (A 18) in momen-
tum space, i.e., its Fourier transform. Then (A 18) becomes

(kl _ ikx dk

g )4 j/.l(k,p)e’(k » dk dp

8 L[t tnemip (e akap

+ fJ (k Y™™ dk.

Finally, Eq. (A 18) in momentum space is given by

(A19)

k2 — m2)p (k) = —ng(p+k,p>dp

_ & k—
o [ <o t—mig o ap

—J (k). (A20)

By acting on both sides of Eq. (A20) the nth functional de-
rivative with respect toJ (s) (and using the Leibnitz formula)
we obtain

(k2 — m®) (@ "(k,5),.055,))

= —g JA "(p+ k,psSys-.58,)dp
_g 1

Q@) mA

X <¢ B m(P’sm + 1’-"’sn)) - 8m6<k - Z s,’); (A21)

i=1

fdp«p "k = puSires,))

where
" _ _8"A(pg)
A7(p.gS e sS,) = )b 6 (A22)
(@ "(K\S15018,)) = A (A23)

8J (5,87 (s,)’

and C)’ = nl/m!(n — m)! are the binomial coefficients. For
J(x)= 0 from energy—-momentum conservation one can
write (A22) and (A23) in the form
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A pg,SyesS,) = A(PS1ye S )O(p — g — 5y —5,), Finally, the infinite system of coupled equations for the func-
(A24) tions 4 "(k,sy,...,s,) for the case of (g/3) ¢ * interaction is

(@ "(k,$15.08)) =D " 7 (k.S 1505, )8(k — 5, —5,). (A25)
2 2 n
Substitution of (A24) and (A25) into (A21) gives then e N
(k* — m*)D"(k,s,,-...,,) =8, + z'gJ-dpA n+ l(k + DS iseesSik — En: si)
i=1

- b, fA"+1(k+ SpeesSk — S s,)d mof &
0o— & y 2531 z] ;] ap _ cr, .4 l(zs,.,sl,...,sm_l)

= (277' )4 =1
2 n+l m~1(2s”s1, ’sm4l) n—m
(217_)4 Pt XA k — .zl S 8 m + I A B (AZS)
«D"— m(k — Z S isSm 4 ,,...,s,,). (A26)
f=1
. Thus we have arrived to the coupled system of nonlin-
From (A15), (A22), and (A23)~(A25) follows the relation ear integral equations which can be schematically written
ia "(p,sl,...,sn) = Dn(p,s,,...,sn). (A27) as:4 = AA4.
]

APPENDIX B: DERIVATION OF INEQUALITIES (3.1)-(3.3)

Inequality (3.1): Going to ** — a”-representation, we write the left-hand side of (3.1) in the form

o«© =]
2
Jdl‘PJ‘ J dadBe*a(P”m )(e*ﬁ[(P+q)z+m1)] _e-B(p2+mz))
o Jo

— J’w J‘w dadBe @+ B)m’(e ~Bq’f dpe~ @+ 80’ —26pq _ f d'pe—© +ﬂ)p’)_ (B1)
0 0
With the help of the formula"'
f d'pe= 5"~ = (72/£ D)%%, (B2)

we perform integration in (B1) with respect to p. Then (B1) can be written as
f J dadfe= P [/(a+B)]le -5 erm)l ] (B3)
0 0

Introducing new variables
B=4 a=A4(1~—¢§), with dapB)IAs)=A,
(B3) becomes

77'2J-l dgjw.tiie‘&m’(e_iql(§—§2)_1):772-]‘1 ng*w d¢J~w di(e_i['a’+mz+q2(§—§2)]—e“'{(‘i"*""z))
0 o A X R X

=H£ld§Lwd¢[¢+m2+;2@_§2) - qP-i-lm2 ]

1 2
= —#ZJ d§1n[1+—q—2(§—§2)]. (B4)
0 m
The absolute magnitude of this integral is less than
7 In(1 + ¢*/4m») <7 In(1 + |q|/2my*<7*|q|/m, (B5)

which is the inequality (3.1).

Inequality (3.2): We write the left-hand side of (3.2) in “a’’-representation and perform integration over / using (B2).
Then the left-hand side of (3.2) can be written as

J'“’ J"’" J“” da, da, da; jd“lexp{ ‘a1(12+m2)—a2 [(l—k)2+m2] —a, [(l—p)2+m2]}

=f f f da, da, da, exp[ — m*(a, + a, + a;) —a,k* —a; pz]fd“lexp[—(a1 +a, +a))l?*+2(a,k +a; p)]
0 0 JO

expl@,k+a, p)/(@, +a: +a)]  (ge)
(@, +a, + a,)

='n'2f f f da, daz da, C)(p[--}nz(a1 + a, +a3)_a2k2_a3 P2]
0 (] (0]
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FIG. 3. The division of four-dimensional in-
tegration space into three regions £2,, £2,,
and £2,.

Introducing new variables
a,=A(—§&—§&) a,=4&, ay=4§, with da,a,a;)/dA.6.6) =4 &

we see that (B6) becomes equal to

L j;.,gpo J.dsgl dé, J:o dA exp{ — A [m? +§1k2 + §2P2 — €k + §2P)2]]

&)+ &<

= J§.-§z>0 del dé, [m* + Ek*+ &,p7 — &k +6,p)°] ! &)
£+ £:<1
For fixed k, the integrand in (B7) reaches its maximum at the point

p=[56/(0—8))k
with the value of integrand equal to
1
m 4 k(1 - & — /(1 ~ &)
Therefore, what we need is to prove the following inequality:

1 B/

fi‘f;ﬁil e Y (R ra ®9
For this purpose we divide the integration region in (B8) into two regions:

Sy 8<E 0<Eyn & +6<I—8, S 0<6<8. 0<&, 1—8<E +6,<], (B9)
where

1
T 1+ |k |/m’

The area of region S, is less than 28. Thus the integral over this region is less than

28/m* =2/m(m + |k |). (B10)
In the region S,, we have

§(1 =&, —&)/(1 —§5)>6/2.
The area of this region is less than 4; therefore, the value of integral in this region is less than

i__l__z[m2(2__k2/i_)]_l<___l____ (B11)

2 m*+ k%72 1+ |k |/m m(m + |k |)

Combining (B10) and (B11), one obtains the inequality (3.2) with 8 = 37>

Inequality (3.3): By scaling the variables to / /m and k /m it is obvious that it is enough to prove the inequality (3.3) only
for m = 1. Let us divide the four-dimensional space of integration into three regions £2,, {2,, and £2, and prove that the
estimate (3.3) is valid for each region. Let o, and o, be two subspaces (o,Uo, = R *, Oco,, keo,) divided by a hypersurface
which passes through @ = 3k perpendicular to k. Let S, and S, be spheres of radius |k | with their centers at 0 and k
respectively. We take £2, = S\no, 12, = §;n0,, and 2, = 2,u, (Fig. 3).

In region {2, we have
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1 1

1

< .
CH+ D=k + (I —k [+ P+1 GE2+ DAlk] + 1)

Therefore, the integral I, over theregion {2, is

I < 1 d*l < 1 k1 e,r*dr le k? . 2¢,

AR DGR+ D o P T Gk DAL+ 1) rbmt Gk DK+ T Ak +1
<o B12
k1] (B12)

where € is the area of the surface of the unit four-dimensional sphere.

In the region (2, we have
1 < 1 1
CH+DI=kP+ 11—k +1)  Gk2+1) [d—kP+11(I—k|+1)
Then the integral 1, over the region {2, is
4 1k | 3
L< 21 J‘ d?l < J‘ € dr €|k | 8¢, (B13)
Gk2+ D Jo. [(=kY +1I([I=k[+1) G+ DJo P+ DE+1) k241 [k 41

Intheregionf2,wehave |/ |>|/ — a| — |a| and |/ | »2|a|. Therefore, |/ | > |/ — a|. Analogously, in this region |/ — & J>§[1 —al.
This region is contained in the complementary to the sphere of radius R = (3'/2/2)|k |. Thus the integral I, over the region {2,

1S

13<f 4 2 2,2 S %
R GCrr+1D’Gr+1) 8

€’ dr 27 F dr 27, fw dr 81 1
R %rz_’_l h 8 °

(B14)

< _
k[Vr41PL 4 k|41

Combining (B12), (B13), and (B14), we are led to inequality (3.3).
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Let G be a compact complex Lie group with Lie algebra G’ and let A,eC*%(R*G")

be a gauge potential. We construct a gauge covariant local quantum field operator ¢
which solves the equation [(3, + i4,)(o* + iA*) + m’]d = 0 and is a free field in the
distant past or future. The associated scattering theory is described by a unitary gauge-

invariant S operator.

|. INTRODUCTION

A. A field theory typically consists of a set of fields
satisfying some coupled nonlinear differential equations. In
the external field problem some of the fields are idealized as
fixed functions on space—time (the external fields). The re-
maining fields then satisfy equations which are typically lin-
ear and hence tractable. In this paper we study the case of a
scalar field ¢ of mass m in the presence of an external gauge
field 4,,. We are mainly interested in the quantum problem
where ¢ is a field operator, but begin by discussing the classi-
cal case where ¢ is a function.

The starting point is a gauge group G which we take to
be a complex compact Lie group. (Real groups could also be
considered.) Let p(G ) be a representation of G by unitary
operators on a finite dimension space C™. Let G’ be the Lie
algebra for G and let p(G ') be the representation of G’ by
skew-Hermitian operators on C ™. The gauge field i4,,
0<u<3, is then a p(G ')-valued function on the space-time
R *. The scalar field ¢ is a C "-valued function on R * and the
dynamical equation is

(18, + 4,01 (8 + id*(0)] + m*}g (x)=0. (L1)
HerexeR *, 6‘” meansd /6xu ,and we employ the summation

convention x,, y* = xoy, — 2] _ 1x, . The above equation
will be abbreviated as

@O, +m*)$=0. (L.1y

Inthespecialcase G =p(G) =U(1),G’' =p(G') = iR,
the real-valued field 4, is an electromagnetic potential and
the complex-valued ¢ carries an electric charge. Other
groups [e.g., SU(2), SU(3),---} correspond to generalized no-
tions of charge (e.g., isospin, strangeness, charm, etc.)

B. The form of the gauge equation is chosen to give a
dynamics which is independent of the labeling of charge.
This aspect is best understood in the language of fibre bun-
dles, where the coordinate independence is built in. We di-
gress briefly to explain the point. General references are
Trautman ' or Mayer. ? (The latter also has good references
to the physics literature on gauge theories.)

Let Pbe a principal G bundle over R %, say R *X G, and
let E = P X ;C™ be the associated vector bundle over R *

“’Supported by NSF Grant #PHY77-21740.
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with fibre C ™ and structure group p(G ). The charged scalar
field is now described by a cross section @ of E, and the
external field is described by a connection on Pas given by a
G '-valued 1-form w on P.

Coordinates may be introduced by a cross section
x—(x,g(x)) of Pdefined by g:R “—G and called a gauge. One
can show that given a gauge g, a cross section @ determines a
function ¢,:R,—C"™ and a connection o determines a p(G )
valued 1-formid, = 2 id ydx, on R 4. If g’ is another gauge,
then it turns out that

b=V b (1.2)

AL =y~ @4y + v ', (1.3)
where y:R *—p(G) is defined by

rx) =p(gx) ~ 'g'x))- (1.4)

Conversely, given a family of functions {¢, | indexed by
gauges and satisfying (1.2), there is a unique cross section @
determining them, and given a family of functions {i4 4}
satisfying (1.3) there is a unique connection @ determining
them. (Of course, a single element determines the whole
family.)

Now we can show that the family of differential opera-
tors (1, + m?* for a connection w defines a (differential) op-
erator &, on cross sections of E and so is a suitable candi-
date for defining dynamics. The key point is that the
operator is built out of the covariant derivative 3 - i4 % and
so satisfies

@4, +m) =7y~ 'Qy +m). (1.5)
Now for a cross section @ as given by the family {¢, |} we
define a new family ¢, = (O, + m?)¢, and have
¥y =7~ 'Y,sothat {1, ] defines a cross section ¥. Thus an
operator &, :9— ¥ is defined without making a special
choice of gauge.

C. For the quantum gauge theory we assume that 4 "
has compact support, in fact 4 LECT(R 4p(G"). Then we
show that there exists a local quantum field operator ¢ satis-
fying the gauge equation (1.1) in the sense of distributions.
The field ¢ is constructed to be equal to a standard free quan-
tum field 4, in the distance past. It also reduces to a free
field ¢, in the distant future. We show that there is a uni-
tary operator S connecting these fields by o =S~ ‘¢inS.
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Then .S describes the scattering of the particles created by the
field. Finally, we study the effect of a change in gaugeon ¢, S
and interpret the result in terms of fibre bundles. These re-
sults are all presented in Sec. IT1. As we shall see, they de-
pend on having sufficiently good control over the classical
problem, which we treat in Sec. I1.

D. We now discuss some of the related literature. Gen-
eral discussions of the external field problem are given by
Wightman ** and Seiler. * The case of external gauge fields
has apparently not been previously considered. Several au-
thors have considered a scalar field in an external electro-
magnetic field. However, the unitary result presented here is
new even in this case. It was previously only known for
A, = A, = A, = 0 (Schroer, Seiler, and Swieca °) or for 4,,
sufficiently small (Belissard 7).

We also mention the vaguely related work of Schrader ®
on the construction of a Euclidean Z (¢ ), theoryin an exter-
nal gauge field.

In another paper, ° the problem of a scalar quantum
field in an external gravitational field is treated. This prob-
lem is formally quite similar to the gauge problem.

Il. THE CLASSICAL PROBLEM

The goal in this section is to construct advanced and
retarded fundamental solutions £ § for the differential op-
erator (O, + m?), and to obtain certain estimates on E F re-
lated to the smoothness of the kernel. The construction of
the fundamental solutions is not particularly difficult since
in leading order we have a diagonal system of strictly hyper-
bolic differential operators with constant coefficients. Nev-
ertheless, we go into some detail since the smoothness esti-
mates depend on the details of the construction.

The method consists of regarding 0, + m” as an opera-
tor on a certain scale of Hilbert spaces consisting of functions
which together with a certain number of derivatives vanish
exponentially as x, — — oo Or as Xo— + co. With the
Cauchy data built into the Hilbert space, one uses a priori
estimates and a perturbation argument to show that
O, + m? actually has an inverse operator. The technique is
essentially that of Leray. '

To define the Hilbert spaces, let 7€R, let n = (1,0,0,0),
and let H_ be the Hilbert space of all measurable functions
JR*—C ™ such that ||f]|, = (£,f)? is finite, where the inner
product is

). = | S 7g e dx,
i=1
wherenx = 2 n, x, = x,. If feH_and geH _ ,, then we may
also form

e = f $ fogdx
=1

and have [<f,g>|<|If |- |lgll _ -. ThuseverygeH _ ,definesan
element of the dual space H . In fact, one can identify H _ _
with H . via this pairing.

For each 7 and s = 0,1,2,.-- we next define H_, tobe all
measurable functions £:R “—C ™ such that all distribution
derivatives of order less than or equal to s are functions in 4.
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Wehave H ,=H _and H, .CH,_ fors>s'. H, are the
usual Sobolev spaces. An inner product for H_, may be de-
fined either by

(.= 3 @13,

lee| <. s

@2.1)

where a = (ag,...,@; ) is a multi-index, |a|] = a, + - + a;,
and 8" = d3"-d5’; or else inductively by

EDrerr =Dt S @2 2.2)
u="90

The associated norms are equivalent, and we generally make
the second choice. That H_ | is complete, and hence a Hilbert
space follows by the usual proof for 7 = 0. It is also straight-
forward to show that C $(R *,C™) is dense in H_ . .

The inner product in H_; can also be expressed in terms
of the Fourier transform. For example, if /,geC & the Four-
ier transforms f,§ are entire functions and by Parseval’s theo-
rem we obtain for s>0

)., = J E'ij(p —itn)g;(p — itn)(1 + |p — iTn,Z)Sdp.

This integral also makes sense for s < 0 and we may define
H_ for s <0 as the completion of C & with respect to the
associated norm. We further note that by shifting the con-
tour of integration we have

Go>= [ Sio - img(~p+imap

This gives the estimate [<f,g>|<||f ]|, lgll _ . _, forany 7,s.
Hence the form f,g—<{f,g> extends to H. X H , _ with
the same bound. It is also true that (H, ) = H . __ with
this pairing, but this fact will not be needed.

It is straightforward to show that a matrix of linear
differential operators of order m defines a continuous opera-
torfrom H,_ ., to H__ (s =0,1,2,.) provided that the de-
rivatives of the coefficients are bounded. Thus, if
A4,eC5(R4.ZL(CM) [.£L(C™) = m X m matrices], we have
thatJ, + m?is continuous from H,, , , to H, . The follow-
ing lemma shows that this operator has an inverse.

Lemma 2.1: Let | 7| be sufficiently large. Then there
exist operators denoted E | for 7> 0or E ; for 7 <0 which
map H__ continuously to H,, , |, s = 0,1,2,-, and satisfy

O, +mHE+=E;(@0, +m)=1

Proof: First consider the case 4 = 0. It is well known
that the Klein-Gordon operator (J, + m? has fundamental
solutions E 4 :C &—C =. Infact, they are given explicitly by
taking + 7 <0 and defining

(E§&)x)=Qm) 2 Jei(" ~Imf(p — irn)
X[ =@ —imn),(p —itny* + m?] ~ 'dp.
2.3)

Corresponding to the fact that [J, 4 m? is strictly hyperbol-
ic, the denominator never vanishes for 75£0. and moreover,
we have the basic a priori estimate for | 7| sufficiently large:

| — (p — itn) (p — itny* + m**>C7(1 + |p — itn]?).
(See, for example, Treves, '' Sec. I1.5.) It follows that
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NEGES N7
= [0 — i) — o i) o — irmy 4 ] =2
X(1+ |p —irn|?)** 'dp
<C -~ 'r7? Jlf(p — itn)|*(1 + |p — itn|?)'dp
=C ' 2f2

Thus E ;& defines a continuous operator from H_ to H_ , |
with a norm which is Z(|7| ~ ! as |7|— .
We now write

O, +m*=0,+m?*+ o,
where

o = 2id, + (3,4 ") x) — A,(x)4 *(x). 24
The operator ./ maps H_,  , to H_  with a norm which is
bounded uniformly in 7. Thus &/ E j° is a bounded operator
on H_ with a norm which is (7| ~') as |7|— . For |7|

large enough ||/ E 5" || < 1, and we may define E F by the
convergent power series

Ei=Eg( $ (-0 EF))
K=o
Then E  satisfies the conditions of the lemma. W
Lemma2.2:LetH__ =nH_ withtopology defined by
the norms ||-||,,. Then we have the topological inclusions

9CH, C¥%

where = C$(R*,C™) and & = C °(R *,C™) with the
usual topologies.

Proof: Y CH_ _ is clear. We must show that the injec-
tion is continuous. It suffices to show that the restriction to
Dy = Cg(K,C™) is continuous for compact K. But this fol-
lows from the fact that, for any s, there exist constants C, ,C,
such that for fe &

W ll-s<Cillfllo<C; Y supl@f)x).

a<s XK

Toseethat H_ _C ?’, note that feH,  implies
¢feH, ., for any ¢eC 5(R 4). By Sobolev’s lemma we have
¢fe# and hence fe# . The injection map from H,_ _ to & is
continuous since for any compact K and s>0 there exist
C,,C, s’ such that for feH

2. supl@N)X)|<Cyl|¢f llo, < Cllgf I« <Callf Il s

lal<s xeK

whereg =1onK. 4

Theorem 2.3: Let 4,€C & (R *,.2(C™)). Then

(1) There exist operators E f mapping & continuously
to & such that

@@ +m)EF =EFQ,+m)=1,

(b)Supp(E tf) is contained in he future (past) shadow

of suppf.
These are the unique operators from & to &' with these
properties.

(2) E } extends to a continuous operator from &'to &'
satisfying (a), (b), and

Ef=(E*,).

2.5)
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Proof: For existence pick any |7| > O sufficiently large.
Then Lemma 2.1 gives E [ as a continuous operator on
H_ _ satisfying (a). Property (b) is also satisfied by (2.5) since
E & satisfies it and .7 shrinks supports. By Lemma 2.2 the
restriction of E } is continuous from & to & . Properties (a),
(b) are still satisfied.

For uniqueness we first claim that if ue 2",
(84 + m*)u =0, and u = O in the distant past (i.e., x, suffi-
ciently negative), then u = 0. This follows from
O, +m? =@ _ ,.+ m, for we have any feZ

ufy)=<u0_, +mHE " ,.f>
= <(DA + mz)u’E :A'f>
=0.

Note that E — . f is a proper test function for u since it has
support in the past of suppf. Now, if E } ,E ; are two funda-
mental solutions, weset u = (E ;7 — E ;) f,fe%, and con-
clude ¥ = 0. Thus E [ is unique.

For (2) it suffices to show that (£ ~ ,.):&'—%' satis-
fies (a) and (b), for then it agrees with E | on & and pro-
vides the extension. But (a) follows by the adjoint of (a) for

— A, and (b) follows since if f€ &', ge &, and suppg does not
intersect the future of suppf, then supp/ does not intersect
the past of suppg and so

GUE =, VI>=<E _ 18/>=0. -
Remarks: (1) From the definition we have the identities
onH__:

Ef=Ef -E;JdEf =Ef —Eg 4E ;. (2.6)
Since .« is continuous from & to &, the identity also makes
sense and holds in .Z°(Z,%). Also .&/:&'—&’, and by tak-
ing adjoints we have the identity in £ (¥",2").

(2) Suppose that u,, or u,,, in &’ is a solution of the
free equation (0, + m*)u = 0. Then we can construct a solu-
tion of (O, + m*)u = 0, which agrees with «,, in the past or
U, in the future by

u=(1—-E ;] o,

in?

u=(1—E;uy,. @7

These are unique by the proof of Theorem 2.3. On the other
hand, given a solution u, we can construct free solutions u;,
or u,,, which agree in the past or future by

=04+ Eg Nu, u,=10+E; A (2.8)

(3) The preceding results will be sufficient for the con-
struction of the quantum field theory. We now turn to the

estimate on E  which is needed for a unitary S operator.
Theorem 2.4: Let f, /,€Z and define exp,(x) =e ~ px,
Then for any s3>0 there is a constant K such that

IKexp,, f1,E Fexp, f,)|<K (1 + |p+¢|%) 2

Proof:Let E=E § and let E, = exp _ Eexp,, regard-
ed as an operator from H__ to itself. Then

|<Cprfl,ECquf‘2>| = |<CXpP + qfl’qu2>l
<llexpp 4 fill 7. SIE|L ol e
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Thefirst factoris & (1 + |p + q| %) ~*?, for we have the gen-
eral estimate

lexp, /17 .
= (V@ +p + P+ o+ irnl)

<K'f(1 F 4P ) U+ D)

<K(1+p)*

Thus we have reduced the problem to showing that
|E, |l is bounded in g. For s = O this is trivial, and the idea
is to relate the bound for general s to bounds at s = 0. To
accomplish this, we introduce the multicommutator

Eppooop, = [a#“,[...,[am,Eq]...] 1>

regarded initially as an operator on H,_ . We claim that for

anys,n,and (uy,...,u,), E,, , extendstoabounded opera-

tor on H_; with norm bounded uniformly in g. The result we

need is the special case n = 0.
First consider £, , = E,_o,,, ., Since

[0,X 4+ m*] =3, , we have [3,,E] = — E(3,«)E.

Thus we can write £, _, as a sum of terms of the form

E(*)A E-(I"¥)E,

where a; is a multi-index. Since £:H_,—H | and
d°«/:H,,—H,,, these expressions are bounded operators
on H_, and hencesois E,, ,, . For any operator &, if
0, =exp_,0exp,, we have [0..0,1=18,,0],. Thus
E . .=, . “")q is also a bounded operator on H_,
and

“Eq;,ul..--,y,,“r,o = ”(El»hwv#,,)q “ﬂO = “E;t,,u-.;l.,,”-r,o

is independent of ¢. Thus the claim is proved for s = 0.
The claim for general s is proved by induction. Suppose
it is true for 5. Then it is true for s + 1 by the estimate for

[,
[P A
=By S + ;llaEw.,..,,,‘,,f I
LUE e 3NN 1
+2 ;IIE(,;H,,.“,,‘,,,“ 12 P11

<ﬁ(1)|lf”i,s+ 1° .

ll. THE QUANTUM PROBLEM

A. We now turn to the quantum problem, mainly fol-
lowing the general formalism of Wightman. ** The first step
is to review the definition of the free charged scalar field with
distinct particles and antiparticles. The one-particle Hilbert
space is defined to be #°; = L,(R *,C",du(p)), where
du(p) = [2w(p)] ~ 'dp and w(p) = (|p| > + m?*) /2. The n-
particle space is the symmetric tensor product #°, = ® {77
and we set % = @& 7_, 5 ,. The full Hilbert space .# is a
tensor product of particle and antiparticle spaces:

& KK

nm=20

F =K =
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For hei”| ,leta(h ) and a*(h ) be the usual annihilation
and creation operators defined on the finite particle vectors
in 77, and then define particle and antiparticle operators on
F by

a(h)y=ah)el,

bhy=1Isalh),
Then

[a()]* = a*(h), [b(h)]* =b*(h), G.D
and we have the canonical commutation relations (CCR),

La(h),a*(h )] = [b(h),b*h")]

~ [ Sh®* 0 dut
J
Furthermore, there is a unique vacuum {2, (the no-particle
state) satisfying
ah)2, =b(h)2, =0. 3.3)

Now define IT *:4—5°, by Fourier transformation
{now with Lorentz inner product) followed by restriction to
the mass shell:

(T =)@ = 2m) (£ @), + p).
The free field operator is defined by

do(f) =all * f) + b*(CIT ~ f),
¢ o) =a*U1 ~f)+ b(CIl * f).

Here we allow for a charge conjugation operator C on C",
which is unitary and satisfies C? = I. Then we have

a*(h)=a*h)el,
b¥h)y=TIea*h).

(3.2)

(3.4)

(600 ]* = ¢ o(F), (3.5)
the free field equation

$o((Qo + m?) =0, (3.6)
and the commutation relations

(6601 o(8)] = (1/DfEgD, 3.7

where E,=E ,” — E 4 is identified with the usual commu-
tator functiond =4 | +4 _.

Hereafter, if T:% —% has adjoint T":.9'—~%', we
write T'¢ to mean the operator valued distribution
(T'd X)) = ¢ (Tf). Thus (3.6), for example, is written
@, + m*)é =0.

B. Now let ¢,, be a free field operator as defined above.
We want to define a field operator ¢ solving (1.1) with ¢, as
data in the distant past. According to the discussion follow-
ing Theorem 2.3, we therefore define for fe &/

¢ () =[(1 —Ef &)$)(f) =il — 2"E _ )],
where .7 is defined by (2.4).

We also define

$*(N)=[d(D1* =051 - LE V]
Hereweuse (1 — E J #/)*=1— «E (T*means T'),
which follows from 4, = 4,,.

Theorem 3.1: Let 4,€C & (R *,p(G")). Then
(a) (Existence) ¢ () is a continuous function of feZ sat-

isfying (O, + m*)¢ = 0 and ¢ = ¢,,, in the distant past.
(b) (Locality) [4 (f).¢ *@) = (1/)<f,E 18, where
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E,=E ; — E [ . In particular, spacelike separated fields
commute.

Remark: Continuous means continuous in whatever
sense the free field is continuous. For example, for finite par-
ticle vectors ¢,y€.7 , the function f~(,¢ (f)y) is
continuous.

Proof: Part (a) follows directly from the definitions.
Given the free field commutation relations, part (b) follows
once we show

(A—-E} NE(—-ALE[)=E,
However, using (2.6), we have
(N-EfAEF(1—~AEY=E}f —EfAE].

Taking the difference of the ( + ) equation and the ( —)
equation yields (3.8), completing the proof. O

C. According to the remarks in Sec. II, we now define
for fe

boul) = [(L+ Eg B, b oulf) = [$ouD]* (3.9)

Then ¢, satisfies the free field equation (3.6), and ¢ = ¢,
in the distant future. Furthermore, ¢, satisfies the free field
commutation relations (3.7) by an argument similar to that
of Theorem 3.1.

The in and out fields are related by

(3.8)

Pous ) = (Z i ) (3.10)
where #:9'—4" is given by
R=(0N+E; &Y —E;A)
=1—E (& — AE } )
=1-EyJ. @3.11)

Here the first step follows by replacing E ; by £ — E,
and using (2.6), and the second step is the definition of J. At
this point we note that ¢, () = #,, (Z'f) allows the defini-
tion of ¢, to be continuously extended to the Schwartz
space * = (R *,C™). This follows since £ ;,J ', and hence
' are continuous operators on %, and &, is defined and
continuous in .%.

Now we may introduce creation and annihilation oper-
ators. For any 4 in #(R *,C"™) there exists & * in (R ¢,
C,.) such that J7°*h* = h and IT h* = 0. Then we define

Ao (h) = ¢0u| (h*), boul (h )= ¢ (‘)ut (Ch*)
and a,,,b ;. so that the adjoint relation (3.1) is satisfied.
These definitions are independent of the choice of 4 *. These
operators satisfy the CCR (3.2), and ¢, and a,,,,b,,, are
related by (3.4). Now all that is lacking for ¢, to be a stan-
dard free field is a vacuum vector. This question is resolved
by the next theorem.

Let us note that (3.10) becomes

@ouh) =a,(I"A'h") + b, (CII"#'h"), G.12)

bou(h) = b,,(CIT*R#*Ch*) + a;, (Il " #*Ch").
We now show that this transformation is unitarily
implementable.

Theorem 3.2: These exists a unitary operator S on %
such thata,,, =S ~'a,, S, b,,, =S ~'b,, S and hence
¢out =8 1¢ins‘
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Proof: According to a standard theorem a CCR preserv-
ing transformation of the general form (3.12) is unitarily
implementable if the off-diagonal operators ~—CJI " Z%'h*
and h—JT-#*Ch * are Hilbert-Schmidt on 7, .

To see this first consider J = o — o E | o/. The dis-
tribution kernel J (x,p) has compact support and thus has a
Fourier transform J (p,q) which is matrix of smooth func-
tions. Typical terms in J;;(p,q) are (up to a constant)

(A;z)q(p + Q)q”: p“<expp(Ap)i(-)7EA+ equ (Av)(.lj>qv‘
Here (4,)),, denotes the ith row of 4, etc. By Theorem 2.4
we have the estimate for any s

T2 | <KL + 1)1 + g1 + [p + gD~ 2,
(3.13)

Now using #' =1 +J'E; and
GEoh> =)' [ 3~ 0@ - b @du(@
and (J Y;(p,g) = J;(¢.p), we have
T2 ), (@)
= 2m’f EJA,-.-( — (a), — p; — o(p), — P)h;(@du(Q).
. 7

By (3.13) the kernel is rapidly decreasing in |p|, |q| and so the
operator h—CI1"%'h * is Hilbert-Schmidt. Similarly the
other operator is Hilbert-Schmidt. [J

Discussion: If £2,, is the vacuum for a,,,b,,, then
0, =S ~ 12, provides a unique vacuum for a , ,b,,, -
Now states of the form

¢om = H a(‘)ut(hi) H b (‘)ut(gj)'gout (314)

i=1 J=1
may be interpreted as containing s particles and r antiparti-
cles in the distant future, just as a similar interpretation is
held for

= [1anth) [[oni)e,

i=1 J=1

(3.15)

in the distant past. Scattering is described by the amplitudes
(Pouo Vi) = (P, SW,,)- (3.16)

outs mY
The qualitative features of scattering are discussed in
Wightman. *

D. Finally, we consider the behavior of our theory un-
der gauge transformations. We let C (R *,0(G)) be the
space of C * functions ¥:R *—p(G ) such that ¥ = identity off
a compact set.

Theorem 3.3: Let 4,4 ,€C & (R *,p(G ")) be gauge po-
tentialswithassociated field operators¢ (f),¢ '(f )andscatter-
ing operators S,S". If i4 ) = ¥ = '(i4, )y + ¥ = '8,y for
someyeC & (R *,0(G)),thend '(f) = (¥ ~ '¢)(f)andS' = S.

Proof: We must show that ¢ — ¢’ = 0. This operator is
defined from ¢, by

(—Ejo)—y(1—Ef o
=ES —vE )T+ m?)
=E (1 =)@+ m?.
Here we use (2.6) and also the identity E £ =y~ 'E ty
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which follows from the same property for 0, + m” and
Theorem 2.3. Thus

¢ () — (g W) = [Co + M, J[(1 =¥ E S)f]=0
since (1 — Y'E [ )Yfisin Z.

Next we claim ¢, — ¢ ., = 0. This operator is defined
from ¢ = y¢ ' by

=(1+Eg&)—(1+E; o)y !

—Eq [@Q+m)— Oy +mdy ']

=Eq (1—y~ )T, +m).
Thus

Soul) — 85 = [C+mIP (A —PEf1=0
since (1 — Y)E fisin .

Finally ¢, = ¢ ., implies S =.5 ' on sums of states of
the form (3.15). Since this is a dense set we conclude S = S'.

Discussion: To interpret this theorem, we return to the
fibre bundle language. Now, however, only gauges in
C&(R*G) are admitted. We suppose that w = {44} isa
connection which is trivial off a compact set in the sense that
for some (and hence all) geC & (R *,G ) the field 4 kisin
C&(R*p(GM). Let ¢, (f) be the corresponding family of
field operators solving (O, + m*)¢, = 0.

The theorem says that ¢, (f) = (¥ ~ ', )(f) just as in
(1.2); i.e., ¢, (f) has the structure of a cross section of £. We
can make this more precise by noting that cross sections
H = {h,} of E can be identified with antilinear functionals
on cross sections ' = {f, | with compact support [denoted
C5(E)]Iby H(F) = <h,.f, > The integral is independent of
g since p(G ) is unitary. Correspondingly, we can define a
field operator @ as an operator valued function on C §(E)
by @ (F)= ¢g(f_g) which is also independent of g. It is @
which is the basic dynamical entity. Corresponding to the
identity (2 ,H)F) = H(Z , F), we define
(2, DPYWF)=¢ (& F) for the field operator. Then it is
easy to check that @ satisfies the dynamical equation
< ®=0.
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The theorem also says that the S operator S, for 44 is
independent of g and so depends only on w. Since w is the
basic model for the external field and S is the basic observ-
able, the attainment of this result has been one of our main
goals.

Note added in manuscript: After the completion of this
manuscript, a conversation with A. Wightman made me
aware of the proceedings of the 1977 Erice Conference
which have recently appeared (G. Velo and A. Wightman,
Eds., Invariant Wave Equations, Lecture Notes in Physics,
Vol. 73 (Springer-Verlag, Berlin-Heidelberg-New York,
1978). These lectures touch on many of the same areas as the
present paper and are recommended to the reader. In par-
ticular Ruijsenaars announces results similar to ours for the
electromagnetic case. Also Seiler’s lectures > appear in this
collection, and Wightman’s lectures contain a proof of the
fact that the Hilbert—Schmidt property suffices for the exis-
tence of S as quoted in Theorem 3.2.
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On a common property of gravitational and chiral exponential
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The dependence of gravitational and chiral exponential Green functions on a “gauge”
parameter which enters the free propagation function of the basic matrix field, is
analyzed. It is proven that by an appropriate choice of this parameter, the Green

functions can be made ambiguity-free.

1. INTRODUCTION

Nonlinear chiral theories and gravity modified field
theories have the common property of containing, in the
Lagrangian density, nonpolynomial functions of a matrix
field. By using localizable exponential parametrization, the
problem of calculating vacuum expectation values of time
ordered products of these functions can then in its simplest
form be mathematically formulated as follows.

Given a v-dimensional real symmetrical (graviton) ma-
trix field ¢, ,(x), (@.8 = 1,2,...,v), which propagates as

<¢aﬁ(x)9¢y5(y)>

= %(6ay 6,66 + 6(16 657 - 20601,6 575)A (x - y)’ (1 1)
and a v-dimensional Hermitian (chiral) matrix field Jaﬁ (x),
{(a,p = 1,2,...,v), which propagates as
(¢_aﬂ (x)’¢_yﬁ(y)> = (5117/ 555 - E(saB BVB)A (x - y)’ (1 2)

find, by taking into account Wick’s reduction theorem,
closed expressions for the traced Green functions

Ti‘:kzw s [c,{A,} | i,je F i<i}]
= ([Tr explcs (x,))]*, [ Tr explke (x,)) 1.
[Tr exp(xd (x, ) ]*), (1.3)

and
Tgkv,)k,ﬁ\ [E,{A;} lije Ff wi<ill
= ([Tr explkg (x,))]*, [ Tr expld (x,))]"...,

[Tr explcd (x,))]"), (1.4)
# » denoting the set formed by the first n positive integers.
4,=A4 (x; — x,) stands for a propagator of the real scalar
massless Klein—-Gordon fieid, « is an arbitrary constant, and
the fields are as usual assumed to be defined over four-di-
mensional Euclidean space-time. In (1.1) the real parameter
c is the so-called gauge parameter, related to the weight of
the graviton field and therefore arbitrary. In (1.2) the value
of the real parameter ¢ depends essentially on the group re-
presentation: For three-dimensional chiral fields, ¢ = O cor-
responds to a nonet of pseudoscalar mesons, while ¢ = | cor-
responds to an octet of such mesons.

“Aangesteld navorser bij het Nationaal Fonds voor Wetenschappelijk On-
derzoek (Belgium).
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Ashmore and Delbourgo’? were the first to derive ana-
lytical expressions in closed form for the gravitational super-
propagator T{*)[c,A ], and the chiral superpropagator T}
(2,4 1. An alternative derivation of the latter result has been
given recently by Kapoor.® Finally, it has been shown by the
present author* that the Ashmore-Delbourgo algorithm is
also very well suited for the calculation of the multimatrix
superpropagators 7 [¢,4 ], T{}[c,4 1, T [e4},and
T 6,4 1 (veNy, keNy).

The exact results obtained show a common property,
namely that one can indicate values of ¢ or ¢ whereby the
superpropagators decrease exponentially in the neighbor-
hood of the singularity of the scalar propagator 4. Motivat-
ed by this observation, Isham, Salam, and Strathdee® pro-
posed the conjecture that gravity is possibly ambiguity-free
in the sense that all exponential gravitational Green func-
tions might demonstrate such a behavior. In the present pa-
per we shall give a rigorous proof of this conjecture. As a by-
product some general properties, also concerning the chiral
Green functions, are found.

2. A BASIC THEOREM

As afirst step in our proof we state that the superpropa-
gators 7")[c,4 ] (veNy), of the gravitational kind, depend
on the gauge parameter ¢ as given in:

Theorem 1:

T, d]l=e <4 TM[04]. 2.1)

Proof: For real symmetrical or Hermitian (v,v) matrices
X and Y, the identity

explu(X + Y)] =exp(uX) + f exp[(u —u)X 1Y
0
Xexp[uy(X + Y)}du, (ueR) (2.2)
can be used to deduce by recurrence and a change of varia-
bles the series expansion
o 1 1 1
expX +¥)= Y dU1J dvzu-f dv, e* Ye* Y
n=1v0 0 0
XY S, + vy + 40, — 1).  (2.3)

Equating the matrices X and Y respectively with the diag-
onal and off-diagonal part of the ¢ matrix, i.e.,
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G, j=12,..) (2.4)

[X §i= K 511

Yij = K¢ij (1- 61]‘)
and taking then matrix elements on both sides of Eq. (2.3),
one obtains the representation

iaayy

iyip Liyiy”

1
,"l-fdu1 J.dv S, ++v,—1)

XCXP( i Uy + +Xi,,i,, vn)' (25)

Since there are at most v different diagonal X components in
the exponent on the right-hand side of (2.5), some of the
variables of integration will not occur explicitly in the expo-
nential; others will stick together as sums. Nevertheless, we
can write most generally that

1 1
J dvl---f dv, 6w, + - +v,—1)
0 (0]
X e"I)(Xi, GVt o+ Xi,, i, v,)
1 1
=J dul---f du,b(u, + -+ u,— DF (uy,...,u,)

Xexp( 3 x )

i=1

(2.6)

whereby F is polynomial in the integration variables and
whereby one or more of these variables may not occur in the
integrand.

Taking traces at both sides of (2.5), one finds with the
help of (2.6), that Tr expx¢é can be expanded as follows:

Tr expked = ZI(')+ Yy IP

i=1 1<i<jv
+ > IR+ +I7 ., @7
1<idjekay
with
I'" =expX, ,
3 1
19= 3 a1, [ du | du,
[y 0 0

XO(u; + u, — I)F(Z)[[az }, V) ] exp(X; u, +X1/ uy),

i 1
=3 ¢°[a,}.1Y,, ,k,Y,-kujo duljoduz

tas]
1

X [ dus8u, +u, + s = DFOLa V3]
0

X exp(X; uy + X uy + Xy 3),

19.,= % ®Va )Y, | Ljef, i<i)]

fa,i
PO lia) v

B (J) o 5
Xexp( .21 X; ui),
V, = {ul,uz,...,zl;,:} (k>2).

Herein the sets {a,,}, (u = 2,...,v) denote minimal sets of
independent summation variables needed for counting the
powers of the different nondiagonal ¢ elements in the var-

(2.8)
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ious matrlx -product chains of such elements. Defining two
chains, containing exactly the same nondiagonal elements
(not necessarily in the same order) and therefore also associ-
ated wih a same label set {a,, }, equivalent when the values of
the corresponding labels are identical, @ “’[{a,,},
{Y,,,..,Y;,}] stands for a representant of the class formed
by the equivalent chains which contain the same elements
Y,,...,Y,,, each occuring as many times as indicated by the
values of the labels in {a,}. Finally, the functions F %" are
derived from a corresponding function F (u,,...,u4,) in (2.6),
by taking into account the combinatorial factors associated
with the number of different chains in the class. It is obvious
that the task of finding explicit expressions for the latter
functions is an enormous one in general. It will become clear,
however, that such expressions are not relevant to our proof.
Nevertheless, in order to clarify some previous introduced
notations, we want to give here exact partial resaults which
have been obtained in a different context by Metha and Ku-
mar,® namely,

=3,

fas} n=1

D P[n, Y= |Y,™ 2.9)

w tul !

2 =_ <
FoImuni) == 0
> = Z > 2>
i) om=0n=0,=0

with (! + m + p)(m + n + p)n + I + p)70,
SO mnp,Y;, Yy Y, ]

i
:l ”|21| k|2m|Yklzn [(
+ (Y Yy Y)P1(1 — 4 p.O)’
F(3)[1,’71,n,P, 19u2’u3]

_p+pl+m+n)+mn+nl+im
(4P m 4 p)(n + p) Im!n!

Xty w) (y 3) (s u,)"(uy uyt5 P~
Note that the class representatives are written in such a way
that the results are applicable both for real symmetrical and
for Hermitian matrices Y. Therefore, one has only to choose
Y identical to the off-diagonal part of k¢ and X identical to
the diagonal part of k¢ to assure that (2.8) is also a valid
formula for the chiral superpropagator case.

The ¢ dependence of the superpropagator T{"][c,4 ]
originates from the vacuum expectation values of functions
of the diagonal elements of ¢ only. This follows from the fact
that (1.1) may be rewritten as

( aa? yy) = K(‘Say - C)A
( aa ? 6) = (Yyé Xaa> =0
(Yaﬁ ’ Yy&) = %K(aay 565 + 6:16 6[37)4

’

k Yki) ’
(2.10)

} (a’ﬂ’r’56/v)‘

@.11)
By using now the property that the 7 ¢ terms in (2.8) contain

the X elements only through factors of the form

11 ([ o £, e

a4}V,
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X exp( igl X; u,.),
we/s".),

whereby one or more of the integration variables may be
absent, and further by using the equalities

o 5 {52

o Zuml(2 )
_exp[l(z(l —o)A i uul — Kcd i u,.u;]

i=1 =1

(C)]
X ( = ) ( =1 / )
4 J

]

3. EXTENSIONS

= exp( — K%cA + k%4 Ev: u, u{)

i=1

o 5 {50

which are easily deduced with the help of (2.11) and which
are independent of the number of integration variables  and
u' present, the substitution of (2.8) into (2.7) immediately
leads to the result (2.1) of Theorem 1.

It has to be noted that, in the present particular case, the
contributions coming from vacuum expectation values of
two I “) terms which do not have exactly the same number of
indices with equal values disappear as a consequence of
(2.11). Finally, we note that we have not found any indica-
tion of the validity of Theorem 1 by analyzing the Ash-
more~Delbourgo algorithm, and this is a fortiori the case for
the generalizations of the next section, which concern Green
functions wherefore the algorithm cannot even be invoked
for calculating exact expressions.

(2.12)

Having remarked already that (2.7) and (2.8) remain valid formulas by setting

X =Kd;5;

- Ghj=1,2,..7),
Y, =«$,(1—8)

It suffices to proceed as in (2.12), with ¢ replaced by ¢, to prove the following:

Theorem 2:
TVEA = T(04].

Next, we state that the previous theorems can be extended to more general Green functions as follows:

Theorem 3:
T L lefd,lijef si<jl] = exp( — e 2": kik A
and R
Theorem 4:
T(V)’“_, ({4l ijef si<itl =exp(—x2c_ i kik; A
icj=1

G.1)

(3.2)

)T 0 L0141, (3.3)
)T 1014y b je f i <)) (34)

We note that the latter theorems generalize the former ones in two ways: Not only can there be more than one traced
exponential of the matrix field in a certain space-time point, but also the number of different space-time points may be greater

than one.

The proof of (3.2) and equivalently of (3.3) is again based on the representation (2.7), (2.8), and follows exactly the same
pattern as before. In fact, the essential step here is the derivation of the equalities:

(e 2 ) P oo 3 )l £ o)) 11, 500 1)

= [ ﬂ exp[x2(1 —-C)kp kq qu i ugp) ugq) _
pcqg=1 i=1

:[H

p<g=1

exp( — ik, k,4,, +xk,k, 4, 2‘2 u® uj-‘”)] H 6( Z u — ),

Kk, k, 4, 2 ul? uj(-")” H (5( 2 u$ — )
s=1 i=1

ij=1
(i)

(3.5)

s=1 i=1

which, after replacing ¢ by ¢, also hold for the chiral case, i.e., for X and Y defined as in (3.1).

4. PROOF OF THE ISHAM CONJECTURE

Since we know the explicit ¢ dependence (¢ dependence)
of the various exponential gravity (chiral) Green functions,
we can now set without loss of generality ¢ (¢) equal to zero
everywhere. Then it follows from (1.1) [(1.2)] that the func-
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]

JjeF i< j} ) are the series sums of nonnegatlve terms. In
any case, a useful upper bound is given by the corresponding
traced Green functions associated with a (v,v)-matrix field
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¥ .5(x) propagating as
(YapX)¥,s(0)) =4 (x —y)  (@BY.6EF ).
The calculation of these functions can most easily be per-

formed by replacing consistently Try/(x,)” by ¢ 7, wherby
= (x,) is a scalar field which on its turn propagates as

<¢7i’¢j> =+ Ar’j' 4.1
With the help of the well-known result

((exp@ )" (exp@,)",....(exp@,)")
=exp( Sk k,~<¢,-,¢>,~>), @2)
i<j=1

we easily obtain as a corollary of Theorem 3 that
T s leldy | ijef si<il]

<exp[K2(v2 -0 Y kk 4, (4.3)
i<j=1
the equality being attained only if v = 1.

By choosing c only for all times greater than v it is thus
guaranteed that all gravity exponential Green functions are
asymptotically (this means when one of the 4 ; functions
tends to + o) exponentially decreasing, which proves the
Isham conjecture.’ It is obvious from the foregoing that we

1800 J. Math. Phys., Vol. 20, No. 8, August 1979

cannot claim to have found the least lower bound on the ¢
values which assure exponential decrease for large values of
one of the 4; functions. Indeed, by analyzing the exact
asymptotic behavior of a variety of traced multimatrix su-
perpropagators given in an earlier contribution,’ we have
good reasons to believe that 1 + €, with € > 0 and arbitrary
small, might as well be a “good” lower bound. Finally, we
can write a formula analogous to (4.3) for Tﬁ”l?wk”[a {4,
JJEF 1 <Jj1 ], but since € is not arbitrary, this does not lead
us, in general, to suppression of ultraviolet infinities in ex-
ponentially parametrized chiral field theories.
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A systematic structure analysis of the correlation functions of statistical quantum optics
is carried out. From a suitably defined auxiliary two-point function we are able to
identify the excited modes in the wave field. The relative simplicity of the higher order
correlation functions emerge as a byproduct and the conditions under which these are
mode pure are derived. These results depend in a crucial manner on the notion of
coherence indices and of unimodular coherence indices. A new class of approximate
expressions for the density operator of a statistical wave field is worked out based on
discrete characteristic sets. These are even more economical than the diagonal coherent
state representations. An appreciation of the subtleties of quantum theory obtains.
Certain implications for the physics of light beams are cited.

INTRODUCTION

Light is essentially quantum mechanical in nature.! A
light beam is therefore to be represented by an ensemble of
quantum states. For a variety of purposes it is convenient to
specify a statistical state by giving the set of correlation func-
tions of all possible orders corresponding to that state. It is
therefore of value to study representations of the statistical
state that make the calculation of correlation functions as
direct as possible. One must of course satisfy oneself that a
set of (acceptable) correlation functions defines the state
uniquely.

By a systematic analysis of the structure and properties
of the correlation functions we can identify the “modes,” i.e.,
the natural one-photon wavefunctions, in terms of which the
given correlation function, and so the associated states, as-
sume their simplest form. Such an analysis basically brings
out the consequences of the positivity properties of the densi-
ty matrix and the Bose nature of light.? Unlike the case, say,
of hydrodynamic turbulence,’ the correlation functions for
light obey uncoupled equations of propagation,* and the in-
teraction with matter can be treated perturbatively. This fact
Justifies the structure analysis of statistical states of the free
electromagnetic field and also leads to a remarkable simplifi-
cation in that we basically need study only systems with one
degree of freedom.

Correlation functions for the quantized free electro-
magnetic field are defined as expectation values of normal
ordered operator functions of the field.’ The diagonal coher-
ent state representation® of the density matrix therefore leads
to expressions for these functions closely mimicking classi-
cal correlation functions defined as averages over classical
statistical ensembles.® The diagonal representation asserts
that any density operator for a quantum system with one
degree of freedom may be displayed in the form
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p= f¢ @25 <zldun(z),
du(@) = (1/m)d *z = (1/m)d (Rez)d (Imz),

Here ¢ is a c-number weight function, the coherent states |z>
are eigenstates of the annihilation operator for complex ei-
genvalues z and the integration is over the entire complex
plane.® These states taken for all z form at the vector space
level an overcomplete family’ permitting a general vector to
be expanded linearly in terms of them in more than one way.
The diagonal representation for statistical states exploits this
overcompleteness to avoid all nondiagonal outer products of
coherent states in the above representation and so achieve a
form similar to a classical ensemble. The weight function ¢ is
generally a distribution belonging to the space Z,. Neverthe-
less with this weight function all “normal ordered” correla-
tion functions can be calculated as if the system were classi-
cal with the same weights.® It must be stressed that we have
here a description of the fully quantum mechanical system
and not just of its classical limit or semiclassical approxima-
tion. The quantum nature of the system lies in the set of
weights ¢ to be admitted, and in their properties. Such a
description is valuable in any assessment of the information
carried by a light beam.

For such a diagonal representation to exist it is neces-
sary that the set of states used be overcomplete. A set of
states constituting a complete, but not overcomplete, basis at
the vector space level would represent almost all density op-
erators in a nondiagonal form. Since a system with one de-
gree of freedom already calls for a countably infinite set of
basis vectors, we do expect every complete as well as over-
complete set to contain infinitely many elements. The coher-
ent states form a two-parameter continuous infinity of states
labelled by the real and imaginary parts of z. The question
naturally arises as to whether there are “smaller” overcom-
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plete families of states which are yet rich enough to permit a
diagonal representation for any density operator in terms of
them. More precisely, are there smaller families using which
we can approximate any given density operator through ex-
pressions of the diagonal form to any desired accuracy?

We find that there are indeed such families which need
not even be continuously infinite. There is a great variety of
countable overcomplete sets of coherent states using any one
of which arbitrarily good diagonal approximations to a given
density operator can be obtained.® It is curious, however,
that if we spread these states ““as uniformly as possible’ over
the complex z-plane, then these states must be more dense
than one per unit phase cell in most parts of the phase plane.
Indeed, Planck’s constant fails to provide a natural size for
cells in phase space with respect to which the density of such
overcomplete sets may be meaningfully stated. This indi-
cates yet another subtle aspect of quantum theory.

The picture of the general density operator for a light
beam has then the following structure: The (electric) field is
expanded in terms of a complete orthonormal set of natural
modes. Under rather general conditions this is a discrete set.
All these natural modes will generally contribute to the two-
point correlation function. The density operator can now be
associated with a multivariate weight function in the excita-
tions of these modes. If we use all the coherent states associ-
ated with the annihilation operator corresponding to each
mode, we deal with the diagonal representation in its con-
ventional form, and the weight function is in general a distri-
bution in a discrete set of complex variables one per mode.
We may alternatively choose a countable overcomplete set
of coherent states to go with each mode, rich enough to allow
diagonal-type approximations to any statistical state as far as
this mode is concerned; thus any state with respect to this
mode can be approximated through ensembles over the cho-
sen discrete set of complex eigenvalues for the mode annihil-
ation operator. And a general density operator for the total
field system can be approximated arbitrarily closely by en-
sembles over the collection of discrete sets of eigenvlaues for
the annihilation operators of all modes.

The plan of the paper is as follows. Section 1 gives a brief
development of the quantum mechanics of a system with one
degree of freedom mostly with a view to establishing nota-
tion and deriving certain results in a form to be used later.
Sections 2 and 3 deal with the analysis of correlation func-
tions and the unravelling of natural modes; both sections are
primarily concerned with the descriptions of those parts of a
statistical state that correspond to *large photon numbers.”
After preliminaries, Sec. 2 analyzes this aspect for a state for
which it is assumed that a correlation function of some defi-
nite order obeys a condition of coherence. Section 3 on the
other hand analyzes this aspect for a general state by a slight-
ly different means. Section 4 introduces the Weyl operators
and the associated expansions of density operators. The
problem of the diagonal representation for operators is then
identified with the one representing an arbitrary vector state
in terms of linear combinations of subsets of coherent states.
The basic tool here is the notion of a second Hilbert space
made up of operators on the original one. In Sec. 5 we make
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use of these results and those given in Sec. 1 to derive the
general discrete-discrete approximation to the density oper-
ator of a light beam. Concluding remarks and some open
problems make up Sec. 6.

1. QUANTUM THEORY OF ONE DEGREE OF
FREEDOM
A classical one-dimensional harmonic oscillator with

unit mass and frequency w has canonical variables ¢, p obey-
ing equations of motion

g=p, p= —uw'yq. (1.1)
Use of the complex canonical variables
a=(g+ip)/V2, a*=@wq—ip)/V2, (12)

allows the solution of Eq. (1.1) to be completely expressed as
a(t) = a(0) exp( — iwt), a*(t) =a*(0) exp(iwt). (1.3)

The instantaneous state of the oscillator is given by the value
of the complex dynamical variable a, and as time advances
the representative point in the a plane describes a circle. This
plane is a rescaled version of the phase space.

For a quantum system with one degree of freedom we
have two unbounded Hermitian operators g, p obeying the
commutation relation

[g.p] =i. (1.4)

(Planck’s constant has been set equal to unity, and no special
symbols such as carets are used to distinguish operators, as
there will be no cause for confusion on this account.) This
relation can be transcribed in terms of bounded operators by
introducing the Weyl families of unitary operators

U (o) = expliog), V(7) = exp(i7p),

—w<o,7<w, (15)
Then Eq. (1.4) is equivalent to
UU(@)=U(og+3d),
Vinv@)=V+1),
U(o)V(r) = V(r)U (o) exp( — ioT). (1.6)

Setting the frequency w equal to unity for simplicity, the
annihilation operator @ and its Hermitian adjoint a * are de-
fined, following the classical definition (1.2), as

a=(q+ ip)/\/_Z_, at=(q— ip)/\/z, (1.7)
and then the commutation relation (1.4) appears as

{aa't =1 (1.8)
Coherent states’® are eigenvectors of the annihilation
operator,

alz) = z|z), (1.9)

with the eigenvalue z being any complex number. These
states are normalizable, and when normalized to unity their
Schrodinger wavefunctions may be taken to be

12y =7 expl — 3¢ —2V2) — 422t —2)).
(1.10)

No two of these states are mutually orthogonal as one has
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Galz'y = exp( — blzf — 4|2’ +2%2), (1.11)

The coherent states taken together for all complex z are com-
plete as they furnish a resolution of the identity in the form'

¢=J|z> GEldu@=(1/m) (12> <ald’z

Actually, however, they are overcomplete, as one can easily
exhibit linear dependences among them in the form of inte-
gral relationships. On the other hand any finite number of
distinct coherent states are linearly independent. We come
back to the use of Eq. (1.12) in a moment.

We can rewrite the operators (1.5) of the Weyl family in
the form

U(o) = explio(a + af)/\/g],
V(r) = explr(a —a)y/V2l. (1.13)

This motivates the introduction of the more general Weyl
family of unitary operators

(1.12)

W (a) = exp(aa’ — a*a)
U iiﬁ) V( - Lﬁ’*)
( V2 V2

( an_az)
xXex _—,
A"

where a is any complex number. This family will be put to use
in Sec. 4. At this point we note the diagonal coherent state
matrix elements of these operators,

W (a)|z) = exp( — Lla|? + az* — a*z). (1.15)

Because of the overcompleteness of coherent states, one
expects to be able to “‘expand”’ any state |¢) in terms of them
in more than one way. A particular expansion is supplied by
the resolution of the identity, Eq. (1.12); one has for any |/,

0y = f Celylz> duta)

(1.14)

(1.16)

The particular “wavefunction” occurring in this expansion
has certain characteristic features. If for convenience we
write

<Yy = exp(— 1z f(2), (1.17)

then f(z) is an entire analytic function whose behavior for
large |z| is controlled by

| S@I< ¥ lexp(3]z]). (1.18)

Using Eq. (1.10) we can relate £'(z) to the Schrédinger wave-
function of |¢/)> through

f@=mexp(—12) [ wia)

X exp( — 4g” + ¢2V'2) dg'. (1.19)
An alternative expansion possibility arises by consider
ing a suitable subset of coherent states. One choice of subset is

given by |1'\/2r> for all real r. If we tentatively write an
expansion
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0> = 7 f o)V 2r> dr, (1.20)
a means must be found to evaluate the weight function v(r).
One way is to take the scalar product of both sides of Eq.

(1.20) with another vector of the subset, |i\/2r’>. Then use
of Eq. (1.11), (1.17), (1.19) gives:

Jw v(ryexpl — (r —r')) dr

= 77’1/4J. ¥(q') exp(— 54" + 2ir'q") dq’, (1.21)

so that

o) =7 [ v esplle) expig) dg. (122
Since the integrand may grow fast at infinity the weight func-
tion () may not be an ordinary function but a distribution
(in the family Z,). Alternately we may take the scalar prod-
uct gf the two sides of Eq. (1.20) with a coherent state

f\/2s>, s real, to obtain
<\/ES|1//> = 7"’2fw u(r) exp( — sz — r* + 2irs) dr,
so that

o) = ZPO (7 /251y exp(s? — 2irs) ds. (1.23)
vl

The two possible expansions (1.16, 1.20), with charac-
teristically different properties for their integrands, use, re-
spectively, a two-parameter and a one-parameter continu-
ous infinity of coherent states. Instead of such expansions, if
we were satisfied with merely being able to approximate ar-
bitrarily closely to any > through combinations of coher-
ent states, more economical possibilities in terms of the so-
called characteristic sets exist.'' A set.S of points in the com-
plex plane is a characteristic set if we can assert that

GlPy =0, zeS=s|yd> = 0. (1.24)

A set S with a finite limit point; the set of all real numbers;
the set of all imaginary numbers; any sequence {z, } of dis-
tinct nonzero complex numbers for which

oC
Sial =

n=1

(1.25)

for some positive e—all these are examples of characteristic
sets. Let us restrict ourselves to discrete sets. In terms of the
corresponding coherent states |z, | we could approximate a
given [i> to arbitrary accuracy: For each % > 0 we can find
an integer ¥ () and coefficients b, () such that

> — Sz

n=1

<. (1.26)

However, for a general vector |¢) there is no guarantee that
there exists a definite set of coefficients 4, such that the
sequence of vectors

N
I¢N> = z bn,zn>

n=1

forms a Cauchy sequence converging to |¢>.
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We conclude this resumé of the properties of coherent
states by quoting one more interesting example of a charac-
teristic set and mentioning a property of such sets in general.
The example, due to von Neumann and Perelomov,'? is the
set made up of points in the complex plane of the form

2=VsU+im), Lm=04+1, 42 s<m(1.27)

Thus by essentially picking one coherent state in a phase
volume smaller than a unit cell in phase space we get a set
with which any |#)> can be approximated arbitrarily closely.
The property of characteristic sets we have in mind is this: if
from any such set S any finite number of points are removed,
the remaining points still make up a characteristic set.

2. CORRELATION FUNCTIONS AND NATURAL
MODES

The free electromagnetic field may be characterized ei-
ther by the transverse vector potential A(r,t) or by the elec-
tric field E(r,t), both of which are transverse and gauge in-
variant. The interaction Hamiitonian of an electron with the
field" is expressed in terms of A directly, so that theoretical
expressions relating to experiments based on photoelectric
detection naturally involve A also.'* We shall thus choose A
as the basic variable for defining correlation functions,
though one can always pass to the variable E by time differ-
entiation. The positive frequency part of A(r,t), sometimes
called the analytic signal,'*** consists entirely of annihilation
operators and has the time dependence

A () = e~ @ AT, 0), Q.1)

where w is the (positive) frequency operator defined by the
wave equation

(V2 + A (,0) =0, ©=(— V)™ 2.2)
The transversality of A (*) is expressed by
V:AH)(rt) =0. 2.3)

Therefore, there are only two independent components to
A (%), In momentum space these are the components ortho-
gonal to the momentum direction, and may be chosen to be
the two circular polarizations denoted by a two-valued po-
larization index €. Therefore, we may write for the vector
potential,

AU, )=V (ret) = Vxt). 2.9

When it is not essential to indicate the polarization index €
explicitly, it will be combined with the position vector r into
a single symbol x; and formal integration over x will mean a
sum over € plus ordinary integration over space. The time ¢ is
not combined into x in this way. In fact in all the following
analysis we shail be concerned only with conditions at one

instant of time, and time variables ¢ will be dropped entirely.

Let some statistical state of the field be given, and let the
corresponding density operator be p. The general (m,n) or-
der correlation function is defined as the expectation value of
the normal-ordered product® of m negative frequency (cre-
ation) field operators and » positive frequency (annihilation)
field operators:
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L™, XX 1V 2 eenV )
=V E)VEV @)V @)D
=Tr[V @)~V @,) pV (x) 'V (x,). 2.5

Here, m and n are nonnegative integers, and for given values
of these, the correlation function depends symmetrically on
the m x’s and also on the n y’s. For conciseness, we may write
I “™"(x;p) for the above correlation function; the super-
scripts imply that x actually stands for m arguments, each
consisting of a position vector and a polarization label, etc.
As seen by inspection of Eq. (2.5), the following relation
holds,

L™ px) = [T (xay) ], (2.6)

Further, for m = n, the “matrix” I"“""™(x;y) with continu-
ous matrix indices x and y is nonnegative,

JXm".dxm dyl'"d-})mf(xl"'xm)*r(m,'n)(x;y)f(yl"'ym)

>0. 2.7

More generally, we may view the entire collection
I™"(x;y) as constituting a giant matrix I" in which """
stands in the (m,n) position when I" is partitioned.'® If simi-
larly fis a giant vector at whose mth position stands a sym-
metric function f,, (x,,...,x,) of m x’s, then we may identify I
as a nonnegative matrix according to

Srr= S |deeds,dyi dy, fx0x,)

mn =0

XA 06p) [ preey,) 0.

Wwe now wish to study in more detail some general properties
of these correlation functions, especially for “large” orders.

(2.8)

For this purpose we introduce the family of “optical
discriminants” 4 “™"(x;y) according to

A (m,n)(x;y) Er(m,m)r (n,n)(y;y)

— [™P(xy) T (pix). .9)

These are real functions of the indicated variables, and the
essential point in the definition is that these are nonnegative
quantities. In fact, in terms of the operator combination

G " (xip) = L @)V (x)V (x,,)

— TGV @)V (), 2.10)

we have
A I Ny p)

= Tr(G ™" (x)pG ™" (x;y) >0, 2.11)
so that (provided I" ™" does not vanish identically) it fol-
lows that

4 () >0. 2.12)

Another expression of this result can be given in terms of the
“coherence indices.” The coherence index of order (m,n) is
defined to be
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S (ey) = I OPey)/ [F ™™l “P(pp)172, (2.13)
Then Eq. (2.12) says the same thing as
0<|S (x| < 1. (2.14)

Let us now have a statistical state p for which it is given
that for a certain pair of integers (/n,n), the inequality in Eq.
(2.12) becomes an equality for all choices of x and y. (We
assume that I" ™™ is not identically vanishing, and without
loss of generality set m>n.) Equivalently, p is such that the
coherence index of order (7,n) is unimodular for all
arguments:

IS " 0ey)| = 1. (2.15)

Two interesting questions arise: (i) what can be said about
the other correlation functions """, (ii) what is the form
of the most general p that leads to Eq. (2.15)? We examine
these in turn, basing the analysis just on positivity of p and
the Bose nature of V. The characteristic differences between
the cases m = n and m > n will be pointed out at the appro-
priate places.

As pointed out elsewhere'® that the coherence indices
have a maximum modulus of unity may be seen as a conse-
quence of Schwarz’s inequality as applied to the m-fold and
n-fold products of the field operator. The coherence index
may be viewed as a generalized visibility index. In the analy-
sis of Ref. 16 it was concluded that unimodularity of 4 (n,n)
implies it for all § (;m',r") with max(m’',n’)>n. We shall see
below that an even stronger conclusion can be derived from
the unimoduiarity of S (m,n) with ms£n.

The vanishing of 4 “"(x;y), combined with Eq. (2.11)
and the fact that p is nonnegative, leads to the following
operator condition on p:

V(x)-V(x,)p = [T "™ @x)/ T "oV @)~V ©,) p.
(2.16).

This is to be satisfied for all independent choices of the x’s
and p’s. This is easily exploited to give the relations

") = Ty )0 )/ T PGy y)
= [ "™ ox )L D(x' )/ T ™ (x'x), (2.17)

where again all arguments may be chosen independently.
Stated in terms of the coherence indices, these relations are

S(m‘n)(x;y) — S(m,n)(x;yl) S(n.n)(y';y)

= S mM(x:x") S""""(x’;y). (2.18)

In boths Egs. (2.17) and (2.18) we have two independent
relations only if m > n. These functional equations imply
that each of the three coherence indices has a separable de-
pendence on its two sets of arguments:

S O(xy) = 8§ (x)/S O p),
S('"*’")(x;x') — S(’")(x)/S ('")(x'),
S0y =S PeVS(y), @.19)

We have here a symmetric function.S ™ of m arguments and
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another S of n arguments, the two coinciding for m = n.
Then Eq. (2.15) shows that S ™ and S may each be taken
to be unimodular, which in turn leads to both S ™ and
S ™ being unimodular along with S ™™,

The result (2.19) can now be fed into the operator con-
dition (2.16) on p, and this then takes the form

V(x)-V(x,)p = [@a™x)/a™(NIV @)V ©,)p,
a™(x) =[x, x) ]2/ (x),
a(")( y) = [I“”v”’(y,y)] v/ (n)( y)_ (2.20)

Once again we note that we have two distinct symmetric
functions a “ and a ™ when m > 1 and just one when

m = n, and the operator condition holds for all choices of x’s
and y’s. We now exploit the fact that any two V’s commute:

VEW x)-V(x)p=VE)VE)V(x,)p,
ie.,
VEV (y)-V @) a™(plp

= [a"(& X200 X,)/ @ (X120 0X ) |

XV @)V (y)V @)/ (p)] p. 221

Since the right-hand side must be independent of x , ,...,x, , it
follows in the first instance that the dependence of & " on its
first argument must separate from its dependence on the
remaining ones; but since @ ™ is a symmetric function, it
must factorize all the way. Thus we get the result’

a'™(x) = C,, u(x,)-u(x,,), (2.22)

where we assume u(x) is a normalized “mode” function, and
C,, is a constant. By a parallel argument, for m > n, we have

a(y) = C, vo(y))-v(p,), (2.23)

but it is easy to show that v must coincide with u. Assuming
this done, the operator condition (2.16), or equally well
(2.20), on p has the form

Vx)-V(x,) p = [C, u(x)-u(x,)/ Cu( p)-u(,)]

XV (y)-Vy,)p. (2.24)

To fully exploit the fact that this must hold for all x and y, let
us introduce the annihilation operator a for the mode u, and
its adjoint as

a= f(dx) u*@)\V(x), af= fdx u(x)V(x)t. (2.25)

Then Eq. (2.24) is equivalent to three conditions on p:

Vx)-V(x,)p=ux)-ux,)a" p, (2.26a)
V(yl)"' V(yn)p = u(yl)"'u(yn) a",ﬂy (226b)
a" p = (C,/C,)a"p. (2.26¢c)

For m = n, the first two conditions coincide while the third
is vacuous. We shall see later that for m > 1 (2.26¢) is a very
strong condition on p.

We have demonstrated thus far that Eqgs. (2.26) are nec-
essary consequences of Eq. (2.15); if the latter is valid, there

E.C.G. Sudarshan and N. Mukunda 1805



is some mode function u(x) with associated operator a, and
constants C,,, C,, , such that Egs. (2.26) are obeyed by p. The
converse is also true: From Eqgs. (2.26) we can obtain Eq.
(2.15). We easily get the results, given (2.26):

" (xp) = u(x,)*-u(y,) Tl'(a"pa’f"’)»
I ™™’y = u(x)*-u(x,,) Tr(@"pa'™),
F("’")(V;VI) — u(yl)*...u(y'") Tr(a"paT"); (227)

and from here, remembering Eq. (2.26¢), the unimodularity
of " follows. Moreover, the factorizability of all correla-
tion function """ for m',n’ >n is an easy consequence of
Egs. (2.26) '*:

L) = g7 u(x)*uv,),

g = Tr(a" pa™), (2.28)
In particular, if the optical discriminant 4 ‘'’ vanishes so
that the two-point correlation function I" *!'"’(x;p) factorizes,
then all correlation functions, including the ones I" ™ and
@™ will factorize in terms of just one mode function u(x),

and the statistical state may be said to be “mode pure.” This
is not necessarily a coherent state, but it will be so provided

Tr(a"pa'™) = z'z"™ (2.29)

for some complex z and all m,n >0,

m'.n'>n.

The second part of the analysis concerns the most gen-
eral form p can have if Eq. (2.15) is to be satisfied. We know
that we must find the most general solution to Egs. (2.26); of
these, Eq. (2.26a) is a consequence of Eq. (2.26b) if m > n, so
we need solve just Egs. (2.26b) and (2.26¢), which we write
again for definiteness:

V(y)-V ) p=u(y)-uQy,ap, (2.30a)
a"p =(C,/C,)a"p. (2.30b)

The case m = n [when (2.30b) is empty] is taken up first, the
case m > n later. To begin with, we recall the general form of
p, given that it is Hermitian, nonnegative, and of unit trace,
its eigenvalues p; form a discrete set summing up to unity. If
the corresponding eigenvectors are |¢; >, we have:

pP= zpj|¢j><¢j|’ p;>0, ijz 1.

There are, naturally, no terms here corresponding to zero
being a possible eigenvalue of p; the |¢f; > will be an orthonor-
mal set which is in general not a complete one but can always
be extended to a complete orthonormal set. Now it can be
seen that even if the vectors |¢/; ) are not pairwise orthogonal,
the expression in Eq. (2.31) yields an acceptable density ma-
trix provided only that the numbers P; remain positive, sum
up to unity, and each |¢; > is of norm unity. In this more
general situation, we do not interpret the p; and [¢; > as ei-
genvalues and eigenvectors of p, but interpret p as being a
convex combination of the pure state density opera-
tors|y; > (¥, |. It follows that we need find the most general
solutions to Eqgs. (2.30) assuming p to be as given in Eq.
(2.31) but need not insist that the |¢}; > be pairwise ortho-
gonal. But the fact that the constants p; in Eqs. (2.30) are
positive is enough to show that the operator conditions de-
veloped above for p must in fact be satisfied by each [y, >; it is

(2.31)
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not necessary, in order to make this statement, that (2.30) be
an expansion of p in terms of its eigenvalues and eigenvec-
tors. Specifically, each of Egs. (2.16), (2.20), (2.24), (2.26),
and (2.30) must remain valid if |¢/; > replaces p in them.

For the case m = n, we choose any normalized mode
function # and ask for the most general vector |¢; > obeying

Vx)-V(x)|¢) = ulx)-ulx,)a™ |y (2.32)
If u(x) is chosen as the first member of a complete orthonor-
mal set (#,0,,0,,--) and the field ¥ (x) is expanded as

V(x)=u(x)a + ZUH(x) b, (2.33)
then the content of Eq. (2.32) can be stated in words thus:
|#> must be annihilated by every product of m annihilation
operators provided at least one of them is one of the b, . |¥>
must be of the form

9> = (F(ah) + P~ P[VT(x)]1}[0),

where Fis an arbitrary function of its argument and P¢" — "
is a polynomial functional of the creation field ¥ T of degree
not more than (2 — 1). We may take any number of such
(normalized) vectors ¢, >, choose any positive constants p;
summing to unity, and put them into Eq. (2.31) to get the
most general statistical state p for which the (m,m) optical
discriminant vanishes identically. The quantities to be cho-
sen freely are the mode function «, the functions F;, the func-
tionals P{" =V, and the p;.

(2.34)

For the case m = n + N, N> 1, we choose again a mode
u(x) and a complex number z,

C,/C,=z". (2.35)
We then look for the general solution |¢) to

Vx)V (x| = ulx)ulx,) a"|4), (2.36a)

aV (@' |p) =2V (@' [¥)). (2.36b)
Asin Eq. (2.34), Eq. (2.36a) is solved by

[¥> = [F@)+P" "[V(x)'1} 0D, (2.37)

but now the function Fis severely restricted by the remaining
condition (2.36b). In fact, apart from the freedom to add a

polynomial of degree (n — 1)ina T (which could be absorbed
in P~ 1), we find

N )
F@h= Y B exp(e?™ Vza"), (2.38)

r=20
where 3, are arbitrary constants. Thus the acceptable states

[1f> are largely determined in terms of coherent states as
defined in the last section, with respect to the mode u:

Wy =3 Bllze™ 5, + POV ()]'|0y. (239)
r=0

Once again taking several such (normalized) vectors |¢;>
and choosing p;, having first picked a u(x) and a z, we get via
Eq. (2.31) the most general statistical state with unimodular
coherence index of order (m,n).

3. ENUMERATION OF EXCITED MODES

In the previous section we discovered the general form
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of a statistical state for which it was assumed that some defi-
nite optical discriminant 4 “™" vanished identically. The
parts of p corresponding to “large” (greater than or equal to
n) total photon numbers was to a considerable extent deter-
mined, and was seen to depend on just one single mode func-
tion u(x). Now we outline a method of directly analyzing
these components of p without assuming anything about the
optical discriminants. As is to be expected, the large photon
number description of p will involve more than just one
mode function in general.

The total photon number operator, N, is given in terms
of the potential A and field E as

N= — 2ifd P () EC (). (3.1)

Since E'*’ is iw times A**’, where w is the frequency operator,
we can rewrite NV in the form

N= [axdy v0'H ) V() 62
where we have denoted the Fourier transform of 2w by
H (x,), and the integrations include polarization sums. Let
us now start with the (n,n) order correlation function
)
T"0cy) = Te [V (p)-V (3) pV @) -V (x,)T].
(3.3)

Since the trace is unchanged by cyclic permutation of its
arguments, and since any two ¥’s (V¥ ’s) commute, we can
use Eq. (3.2) to “contract” one ¥ and one ¥ * and produce an
N at the proper place within the trace:

JH(x,,yl)r“-")(x;y) dx,dy,

=Tr[pV ()" ¥V (x,)'NV (y)-V (¥,)]
=Tr[V(p)-V(p )N —n+DpV(x)V(x)']. (3.4
Carrying out this operation (# — 2) times more, and using
cyclic invariance, we find:

JH(xl’yl)"'H (xn T l) r(n»n)(x;y) ledyl“'dx" — 1 dyn -1

=Tr[V @)V — DV — 2)-(N —n + 1) p¥ (x,)']
=Te[ V@ )oV(x,)],

o=V N DN =2AN—n+1)

xpV (N = )N = 2)-AN —n + 1). (3.5)

The operator o, like p, is Hermitian and nonnegative; all
states in p with at most (» — 1) photons drop out in ¢, while
states in p with # or more photons survive with positive nu-
merical factors. Thus by this process we obtain for """ an
auxiliary two-point function,

D (xy) =Tr[V () oV (x) ], (3.6)

which retains the positivity and hermiticity property but in-
volves only » or more photon contributions to p. Let us then
make an eigenvector decomposition of &:

ey = 3 Auru0), 4,50, 3.7)
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Only the strictly positive eigenvalues A, of @ and the corre-
sponding eigenfunctions appear here; the functions 4, form
an orthonormal set which if not complete can be extended to
a complete orthonormal set. Let %, , v = 1,2,--- 0, be the lat-
ter complete set, and let the subset of v values covered by the
sum in Eq. (3.7) be denoted by «. Make an expansion of ¥ in
the basis u,,,

oc

V)= Y uxa,

v=1

Then Eq. (3.7) may be written

$ w0 ()Tr@,0a) = SAuE*uly), (3.9)

Hy=1 veK

that is,

(3.8)

0 if us#v or véx,

3.10
A, if p=vex. (3.10)

Ty —
Tr(a, oa)) = [
Because of the basic nonnegativity of ¢ we may conclude
from here that

a,0=0 if u é. 3.1
Moreover, since the most general structure for o is of the
form

o= Yajl¢><sl, 0,>0, (3.12)

j
with the (normalized but not necessarily mutually ortho-

gonal) states |#, > having at least n photons, the condition
(3.11) passes over to each |4, >,

a,|l6>=0 if uéx. (3.13)

For any given #, this analysis tells us that only the eigen-
modes corresponding to nonzero eigenvalues of the auxiliary
two-point function & can be excited in the contributions to p
having at least » photons.'* If u,,, vex, is less than a complete
set, this is nontrivial information concerning p. The general
solution to Eq. (3.13) is

|65 = F*"(a,vex)|0), (3.14)

where F " is a possibly infinite polynomial in the indicated
operators with the lowest degree terms being at least of order
n. Taking several p solutions of this form we can get the

general structure of o and then of p remembering Eq. (3.5):

p= 2Pl p>0 Fp=1,
/ J

0 = (F(atven) + PO~ OV '}j05. (.15)

We assume the [¢/; ) are unit vectors. P{" ~ ! are polynomial
functionals of degree no more than (n — 1)in ¥ (x) ©; and the
F; are arbitrary functions of the indicated operators. We
note that this result is the generalization of the results of
Section 2, with the single mode u being enlarged to the set
u,., vex. The correlation function I “*™ in this case involves
the distinguished modes u,,, vex:

]“("'")(x;y) = Z ulul(xl)*...uvu(yn)g("’")(/j.;v),

o VER
g(n,n)w;v) — Tr(av,"'av“ pa;...‘a;”), (3 16)

But it is immediately obvious that a similar restriction to the
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set « occurs in all """ for m',n’>n. It is as if we may
ignore all modes except those present in Eq. (3.7) for com-
puting the “sufficiently high”’ order correlation functions.

Additional information on the correlation functions be-
yond (n,n) allows repetition of this analysis. We now supply
the auxiliary & (x,y) with an index #. Then the >n photon
parts of the statistical state p can involve only the eigen-
modes of @, (x,y) (corresponding to nonzero eigenvalues!).
If we have a sequence of auxiliary functions P, ,P, - with
n, < n, < -, then we have a corresponding sequence of sets of
eigenmodes [u,, (x),vek,], [u, (x),vex,],- with the inclusion
relations «; Dk, 2. The higher the order of the correlation
function considered, the fewer the contributing modes!

4. SECOND HILBERT SPACE AND COHERENT
STATES

Given a Hilbert space 5, we can induce a vector space
structure with an inner product among the linear operators
A,B,-- on # by defining

(A4,B) =Tr(4'B). “.1
So the operators of Hilbert—Schmidt class with finite values
of Tr(4 "4 ) constitute a second Hilbert space %" based on
#°. In particular we may choose 7 as the representation

space of the (unbounded) operators a,a T or ¢,p associated
with a quantum system with one degree of freedom.

Let A be a general operator on #°. We define a set of
four “‘superoperators” which are operators on %" and whose
effects on 4 considered as a vector in %" are given by:

A=A —AdVYN2, 4= @4 —AayV2,
AA= —i@d +AaYVV2, ot =i@'A + Aay V2.
4.2)

These hermiticity relations are in accordance with the defini-
tion (4.1) of the scalar product. By virtue of their definitions
it follows that

(2]} = [l =1,
[ &3] = [ ,,3] =0. 4.3)

Hence these operators correspond to a quantum system with
two degrees of freedom.?

The simultaneous coherent states corresponding to it,
and &7, are supplied by the outer products of the coherent
states in ¥

z, —z¥

|2y <z = V2 21> <22},
Loz (] = — iz‘;f 20 <z). (4.4)

In particular,
o>zl = :\/5 Im z|z) <z|,
2> (2| = -2 Re z|z) <z|. 4.5)

Hence from among all the coherent states |z,> {z,| in %,
those with z, = z, = z correspond to pure imaginary eigen-
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values for both .&/, and «/,. By a straightforward generaliza-
tion of Eq. (1.20) to two degrees of freedom, we may now
expand a density operator p on & considered as a vector in
J in terms of the imaginary eigenvalue coherent states,

p=Wmé@i ld’ “.6)

¢ (2) is the (distribution) weight function analogous to v(r) in
Eq. (1.20). Todetermine ¢ (z) by an equation similar to (1.22)
[or (1.23)], we must get the description of %~ by Schrodinger
wavefunctions like ¥(g’). We define

0=+ &PV Pi= —ila\— YV,
0= (s + ZDH/V2, Po= —i(ds— ZD/V2. 47

On a general Ac.%” these act as

1 1
Q1A= _—[q’A }a P1A=——{P>A},
V2 V2
Od= —(pa1, Pa= —Ligu}, 4.8)

V2 V2

and the only nonvanishing commutators among them are
[lePl] = [QZyPI] =1 (4.9)

The (generalized) “eigenstates’ of @, and @, turn out to be
the Weyl family of unitary operators W () defined in Eq.
(1.14). If a is written as » + is, we find:

QO Wr+i)y=rWr+is), Q,W(+is)=sW(r+is),
P W(r+is)= QD(r+is),
Qr
P, W(r+is)= ‘13_8 W (r + is),
s

(W +is'), W (r + i5)) = 78(F — NS’ — 3). (4.10)

These operators have general coherent state matrix elements
which may be viewed as a generalization of Eq. (1.10),

Z\W(a)lzy = [12') {z|,W (a)] = exp( — §|a|’ — 4|z

— 2P+ az'* —atz 4 22'*). 4.11)

With the operators W (a) forming an “ideal” basis for
J# ", any Ae %" and in particular a density operator p has an
expansion
p= ft (@) W{a)d a (4.12)

with the “Weyl weight” playing the role of ¥(q") in Sec. 1.
The distribution ¢ (z) obeys the integral equations’®

[s@exp(— 12—z Ppas

= th (@) exp( — Sla|* + az'* —a*z)d’a, (4.13)
which generalizes Eq. (1.21) and arises by taking the diag-
onal coherent state matrix element in Egs. (4.6) and (4.12)

and using Eqgs. (1.11) and (1.15). The solution

(2= Jt (@) exp(ila]?) explaz* — a*z)d’a (4.14)
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is the analog of Eq. (1.22). We can also make use of the
properties of coherent states to derive the known result'

o= T [ i e

+ zZ'* — z*2') d 7, 4.15)

which is in the pattern of Eq. (1.23).

5. DISCRETE DIAGONAL REPRESENTATIONS

The preceding section has shown that the problem of
the diagonal coherent state representation (4.6) for a density
operator is in essence the same as the problem of expanding a
vector |¢) in terms of a subset of “‘pure imaginary” coherent
states as attempted in Eq. (1.20). But for vectors we know
that even more economical subsets exist through which arbi-
trarily accurate expansions can be made. We can thus com-
bine the properties of these characteristic sets recounted in
Sec. 1 with the approach of Sec. 4 to get new diagonal ap-
proximations for density operators.

We begin with the one-degree-of-freedom case. Since by
Eq. (4.5) “diagonal” outer products of coherent states corre-
spond to pure imaginary eigenvalues for .7, and &/, we
proceed as follows. We pick two discrete characteristic sets

{ V2 y.}and { — V2 x,,}, both consisting of points on the
imaginary axis, so that x,, and y, are real. Then the double

sequence of points {i\/2 P — V2 x,,} is a characteristic
set'! in the product of the complex plane by itself. Conse-
quently the simultaneous coherent states of .o/, and <&/, with

respective eigenvalues V2 Vs — i\/2 x,, give a set of ele-
ments in %~ through linear combinations of which one can
approximate any member of %" arbitrarily closely. But by

Eq. (4.5) these elements of %" are just the elements

|Zmn> <zmn|1

Consequently we can approximate any density operator ar-
bitrarily closely (in Hilbert-Schmidt norm!) by a discrete
sum

z¢mn|zmn> <zmn|' (5'2)

Zon = Xy + 1Py (.1

The number of terms needed and the coefficients ¢,,, to be
used both depend on the desired accuracy of approxima-
tion." In the case with one degree of freedom and one opera-
tor a, the operator (5.2) describes an ensemble over the
preassigned set of values {z,,, } for a, with the real coefficient
.., being the quasiprobability associated with the realiza-
tion z,,,,, for a. Provided the trace property is maintained in
these approximations to p, the 4,,, must add up to unity but
in general the nonnegativity of ¢, , cannot be guaranteed;
thus Eq. (5.2) is not in general, a convex combination of the
pure state density operators |z,,, > <{z

mn l'

Since a set of points with a finite limit point does form a
characteristic set,!' we can have approximations of the above
type with all but a finite number of points z,,, inside one
phase cell! In certain respects this would mimic an ampli-
tude-stabilized (mode-pure) classical light beam, but every p
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could be reached this way. The quantum aspects are hidden
in the rapid variations of ¢,,,,, as z,,,, varies inside the chosen
phase cell and also as the degree of approximation is
improved.

At the other extreme, we can try to choose the set {z,,, }
as uniformly spread out as possible over the complex plane:
the basic limitation now comes from the condition (1.25) for
a characteristic set if finite limit points are to be avoided.
This condition is to be applied both to {x,, } and {y, }. Let us
then demand that

O

e e A I L (5.3
n=1 n=1
for some positive €, and ¢€,. It is clear that x,, and y, cannot
depend linearly on n, since these series would then converge
for any €,,6,>0. Among fractional power dependences, pos-
sible candidates are, for example,

a<i. (5.4)

This means that the number of points of the set {z,, ] con-
tained in a square of side L is approximately L *’* which is,
for large L, larger than L . In this sense, one needs much
more than one point for phase cell to have a set of pure state
density operators |z,,, > <z,,, | built from coherent states,
with combinations of which any p can be approximated.

YnrXn ~n®,

Formally, representations of the type (5.2) can be ex-
tended from one degree of freedom to the entire field. The
operator V (x)is expanded in some complete orthonormal set

U, (X),
Vx) =Y ux)a,. (5.5)

For each mode a, we choose some mesh of points z*) in the
complex plane in the manner described for one degree of
freedom. Then a density operator p for the whole field can be
approximated through expressions of the form

2 dUman Dz, 1 <25, ] (5.6)

T

with

aglzi > = (zh), 1z, 1. (6.7

We interpret (5.6) as an ensemble over the preassigned set of
realizations of V' (x) given by

Vx;{mn))= ZIZ‘,;”,,} u(x). (5.8)

This is of course a c-number function of x. As in the one
degree of freedom case, the quasiprobability ¢ ({m,n}) that
V (x;{m,n}) is realized is real but may be negative. Even the
term quasiprobability is used only figuratively since two co-
herent states are never orthogonal!

6. CONCLUDING REMARKS

In this paper we have studied the properties of statisti-
cal states describing general light beams from two points of
view. On the one hand we have shown how from the analysis
of coherence functions one can systematically look for sim-
plicity in the large photon number sectors of a given state.
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On the other hand, we have given new understanding of the
diagonal coherent state representation, and in the process
discovered new representations embodying very subtle fea-
tures of quantum theory.

The structure of a state for which the coherence index of
order (m,n) is unimodular is essentially determined, for pho-
ton numbers greater than or equal to n, by a single mode
function and a sequence of constants. The striking differ-
ences between the cases m = n and m > n are worth pointing
out. In the former, for instance, even if one knew that m
photon states were present in p, nothing definite could be
said about m + 1 and higher photon states; they may or may
not be present in p. If m > n, on the other hand, the presence
of m photon states in p guarantees the presence of states with
arbitrarily large photon numbers, all in the mode u(x) of
course. This is because the relevant parts of p are determined
in terms of coherent states which are superpositions of states
will all possible numbers of photons.

Turning to the theory of discrete diagonal coherent
state approximations to p, we would like to make two com-
ments, The first is to clarify the situation concerning the use
of a characteristic set of coherent states distributed “as uni-
formly as possible’”” over the phase plane. At the level of
making approximations to vectors through linear combina-
tions of coherent states, the example due to von Neumann
shows that by taking one coherent state per unit phase cell
we get a characteristic set. In other words, the set of points

Zim = \/ T (l + im)’ l’m = O’ + 1) + 2""

is a characteristic set in the complex plane, and any |#) can
be approximated through combinations of coherent states
|z, >- But the problem of the discrete diagonal approxima-
tions to operators through forming linear combinations of

izmn> <zmn|

is different. Here, the real and imaginary parts, x,, andy, , of
Z,,.. must be such that the set (x,,,y, ), essentially, must be
characteristic in the product of the complex plane by itself.
Equivalently, {x,, } and {y, ] must each be a real character-
istic set, and this precludes {z,,, } being distributed uniform-
ly over the complex plane!

The second comment concerns the fact that one must be
content with arbitrarily close approximations to p but may
“never quite get there.”” To us this seems to point to the very
thin line dividing *“definition” and “existence.” One can well
imagine being completely innocent of the theory of distribu-
tions as yet conceiving of the possibility of the diagonal re-
presentation in its conventional form, Eq. (4.6). Faced with
equations such as (4.13), (4.14), and (4.15) to find the weight
function ¢, one would be forced to say that in general no ¢
exists obeying these equations, but that with “good”” func-
tions ¢, in the formula (4.6) one can produce density opera-
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tors p,, that are “arbitrarily close” to any given p! Indeed,
distributions may usefully be thought of in this way. It seems
that the situation is qualitatively quite similar with the dis-
crete representations based on characteristic sets.

An interesting practical problem is to find ways of com-
puting the coefficients ¢,,,,, in the discrete diagonal approxi-
mation (5.2) to a given p for a desired accuracy. One may try
togetd,,, fromaknowledge of the Weyl weight ¢ () of p, but
the technique of Fourier transformation seems not useful in
this context. This seems to be a genuinely difficult problem;
we have only succeeded in establishing the existence of these
representations.
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Theory of temporal pump stochasticity in stimulated Raman
scattering in dispersionless media?
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A diagrammatic formalism is presented which gives exact results for the forward Stokes
wave in dispersionless media in the field of a temporally stochastic pump. Both pump
and Stokes waves are assumed to be plane waves, but transient effects are treated
exactly. Results are derived in the Bourret approximation for the n-point functions
(n >2) but are exact to all orders in the mean pump field and its two-point function.
The generalization to treat general n-point functions within this formalism is possible
and the method of doing so is indicated. The partial summation of diagrams
corresponding to previous treatments is identified and the next order terms are
evaluated. It is found that for high gain systems, approximations made in previous work

may be quite poor.

I. INTRODUCTION

One particularly important and interesting question in
the stimulated scattering of light and other parametric pro-
cesses concerns the effect of pump noise on the scattered
waves. Recently there has been some interest in this; in par-
ticular the effect of pump noise on stimulated Raman scat-
tering'~'* has been studied both experimentally and theoreti-
cally. Among the motivations for this are the application to
Raman lasers,!® and the absence of monochromatic sources
in the ultraviolet and x-ray regions.® Our motivation con-
cerns the role of pump nonuniformity in excitation of insta-
bilities in high intensity lasers, and the question of the repro-
ducibility of the performance of a high intensity pulsed laser
on a shot by shot basis.

The theory of nonmonochromatic pumping has been
investigated extensively by D’yakov.'® Using an analogy
with light propagation in turbulent media, D’yakov’ devel-
oped an equation of the Fokker-Planck type for the mean
field and intensity in the first Stokes wave. The result is that
the gain at the Stokes frequency is essentially zero until a
critical pump intensity is approached; for intensities near
this threshold the gain may be large and comparable to the
gain under monochromatic conditions. The analysis applies
to very broadband pumps, whose correlation functionis a §
function, and dispersive media. The critical intensity is pro-
portional to the dispersion and vanishes in nondispersive
media. It is proportional to the bandwidth also. Thus the
major result is that the gain is zero unless the gain under
monochromatic pumping is sufficient to overcome the ef-
fects of dispersion. However, the Fokker—Planck equations
give only the threshold; they do not give the gain above
threshold. D’yakov** generalized the analsyis to include fin-
ite bandwidth pumps, in the Bourret approximation, where

“Work performed under the auspices of the U.S. Department of Energy
under contract No. W-7405-Eng-48.
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only the lowest order correlation function of the pump is
included. The method uses an iterative procedure to solve
the coupled differential equations of stimulated Raman scat-
tering. The fields are written as a sum of a mean value and a
fluctuating term, and the result of the iterative procedure is a
perturbative expansion of the Stokes wave in the fluctuations
of the pump. This expansion is truncated at lowest nontrivial
order. The steady state gain coefficients thus obtained are
always less than the gain coefficient for monochromatic
pumping, but rapidly approach this limiting value as the
critical intensity of the Fokker—Planck treatment is exceed-
ed. The convergence of this procedure does not appear to
have been studied. In particular, limits on the pump fluctu-
ations required for convergence have not been given.

The theoretical work on the temporal pump fluctu-
ations has been reviewed by Akhmanov et al.** The problem
of spatial nonuniformity of the pump has been discussed by
Pasmanik and Friedman.’ Their technique is analogous to
D’yakov’s iterative solutions, and an analysis of the validity
of the lowest order approximation is given.

Several experiments®'*!* to measure the gain have been
performed. Akhmanov e al.® used a rhodamine-6G-dye la-
ser to provide a broadband optical noise source and mea-
sured both forward and backward gains in liquid nitrogen.
Zubarev et al.'>'"* used neodymium glass lasers exciting
SRS in SF;. The existence of a threshold was clearly demon-
strated. Vakhonev" et al., using an iodine photodissociation
laser to excite SRS in liquid nitrogen, and Zubarev* have
shown that spatial inhomogeneity can reduce the gain sig-
nificantly. Definitive conclusions from the experimental re-
sults are difficult to obtain because the pumps used are in-
completely characterized, and because the unfolding of
gains requires a detailed spatial analysis. However, the exis-
tence of the threshold and its dependence on bandwidth ap-
pear to be verified.

Most of the work on noisy pumping appears to be con-
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fined to the region near threshold. The extension of theory to
a strongly overdriven instability where gains of the order of
€% or ¢* are present is questionable in view of the conver-
gence limitation. Experimentally only the threshold region
has been investigated, using input Stokes pulses and measur-
ing gains of less than e’. Although the threshold region is
important in the study of Raman lasers, it is not of interest in
high intensity systems where the beam propagates through
gases. From the point of view of stability and reproducibility
of performance, it is more useful to study nondispersive me-
dia under conditions where the instability is strongly over-
driven. The development of a formalism to study this region
is needed, and it is the aim of this paper to develop it.

This paper studies temporal pump fluctuations in non-
dispersive media. The system studied here is one in which a
plane-wave pump drives a plane-wave Stokes wave. The me-
dium is assumed to be both loss-less and dispersionless, but
the effects of slowly relaxing molecular vibrations are treat-
ed exactly. Since any depletion of the pump means that the
instability has already become too strong, we shall confine
ourselves to the region where pump depletion may be ne-
glected. In the case of a monochromatic pump this system is
one for which exact analytic solutions are available. The ex-
istence of this analytic solution allows a systematic treat-
ment of pump stochasticity which gives exact results. In gen-
eral, a noisy pump may be written

A,=A+B, (1.1)

where 4 is the mean field, a nonstochastic term, and B is the
fluctuation, or noise. If B is set equal to zero, the analytic
solution given by Wang'” follows. The pump is a function of
the single variable £ = ¢t — z/c¢, its running time, and the fluc-
tuations satisfy

(BE)B*E)N=G6(E£), (1.2

where G is a general function describing the pump. The high-
er order correlation functions are given by the Bourret ap-
proximation. For example

(BleB ;B ;) = GnGza + GuGzz (1-3)

so that the pump has only lowest order correlations. Higher
order correlations may be included using the methods devel-
oped in this paper, but results are given only in the Bourret
approximation (1.3).

The basic technique used is functional analysis,'® which
is applied to the Stokes wave, and leads to a diagrammatic
expansion similar to the Dyson’s equations used by D’yakov.
The expansion is summed exactly, for general 4 and G, and
the results presented in an integral analytic form. The results
are illustrated by some simple applications, which contain
much of the basic behavior. The system displays both abso-
lute and convective instabilities. As the fluctuations are in-
creased from zero, the instability remains convective, but
increases in strength. The increase is initially linear, but be-
comes nonlinear as G increases. At a certain threshold the
instability becomes absolute. That is, the Stokes wave
E_(£,2) increases with £ for z fixed and no steady state con-
figuration is reached until the pump is depleted. The thresh-
old is evaluated approximately, but it is found that at the
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point where the instability becomes absolute, the fluctu-
ations in the Stokes intensity are so large that the experiment
is essentially irreproducible. The limitations on the pump
fluctuations required by the repeatability of the experiment
are given in Sec. VII.

The previous analyses of D’yakov,'™ and Pasmanik and
Friedman,’ apply to both dispersive and nondispersive me-
dia. Their results correspond to a partial summation of dia-
grams discussed in Sec. VI, the chain approximation, and
follow from the lowest order chain approximation. The next
order terms are evaluated and are found to be nonlinear in
the pump fluctuations. On the other hand, the analysis of
Akhmanov* includes pure noise pumping where 4, = 0.
This corresponds to the loop approximation, discussed in
Sec. IV. The gain formulas are again nonlinear in the intensi-
ty, and the region where Akhmanov claims and Stokes wave
becomes narrowband, even under broadband pumping, is
investigated.

The paper is organized as follows. The stochastic theory
of stimulated Raman scattering is described in the next sec-
tion, and is applied in the following section to the Stokes field
E, . (See Sec. I11.) The diagrammatic expansion is treated in
some detail in Sec. 111, leading to the main result, Eq. (3.28).
Section IV derives the diagrammatic expansion of the Stokes
intensity, culminating in the expression (4.27) for the major
contribution to the mean intensity. The variance in the en-
semble of experiments to which this theory is applied is
simply

8E*=(E[E) — (E) (E)

and is a direct measure of the reproducibility of the
experiment.

Applications are discussed in the remaining sections.
The initial behavior of the system is treated in Sec. V, and
several important cases are discussed. This section is useful
because the mathematics is most tractable in this region. In
Sec. VI, the case where the noise is small compared to the
coherent term is treated. It is described by a sum over a
particular set of diagrams, known as the chain approxima-
tion. In Sec. VII, the opposite case of pure noise (4, = 0) is
treated, and corresponds to a different partial sum of dia-
grams, the loop approximation. The material is discussed
generally in Sec. VIII, which also contains some specula-
tions on the inclusion of spatial inhomogeneities.

(1.4)

This paper is the first attempt at a rigorous or exact
treatment of this problem. It contains some surprises, such
as the appearance of an absolute instability in the limit of
long correlation time, and the very low variance of the
Stokes wave found in the limit of strong broadband pump-
ing. It shows that the mathematical techniques used near
threshold can give incorrect results in strongly driven sys-
tems. Testing these techniques by comparing them with ex-
actly solvable systems emphasizes the need for better ap-
proximations in high gain systems with no exact analytic
solutions.

Il. STOCHASTIC THEORY OF SRS

In the approximation where pump depletion and
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bleaching of the medium may be neglected, SRS is described
by two coupled equations.

(% + ¢! %) E,=04d,0* 2.1
(% +r) Q=0AE;+N. (2.2)

Here E, is the Stokes field, 4, the pump, and Q is the optical
phonon, which is dispersionless. V is a stochastic force de-
scribing the intrinsic noise of the medium. The pump is of the
form (1.1) and is a function of a single variable, £ = ¢ — 2/¢,
the running time of the pump. A detailed mathematical
treatment of these equations has been given by Wang."’
Defining

, 3 Nz
0(¢E) = Z[UIUZZL’déu ”|Ap(§ )l ] ’
The solution for the Stokes field is

Es(g’z) = Es(§10) + UlazAp(g )J‘i d§ ‘D (g,é' ')e -r¢- §')’

(2.3)

2.4
where the integrand is
PEL)=AENEE OI(OEEN22/6EE)
+ j Cdr N*E DO EL), @5)

where the functions 7, and /, are (diverging) Bessel functions
of imaginary argument. The solution for the Stokes field
(2.4), is a functional of the stochastic variables A, and V.
Thus to determine the mean field, etc., the expectation value
of products of E, with either E, or E  with respect to the
random fields must be calculated. By expanding the Bessel
functions, obtaining products of powers of the stochastic
variables, this can in principle be carried out term by term.
However, this is prohibitively complicated to carry out be-
yond the lowest orders of approximation. Fortunately, a
simpler technique is available, that of functional analysis.'

The technique may be illustrated by considering a sim-
ple function of a single variable y = f(x). Assuming that
has a power series expansion near the point x, then the value
of fat neighboring points is given by the formula

f(x + a) = exp(ad /dx)f (x). (2.6)

If Z is a functional of the field Y (x), then a similar formula
applies,

Z{Y(x)+4(x)} =exp fdx’A &N[8/8Y (x)Z{Y (x)}.
ox)

This may be proved by generalizing (2.6) to the case of many
variables and taking a continuum limit. The functional de-
rivative in the exponent has the following definition,

[6/8Y(x)]Y (2) = 6(x — 2). 2.8)
To apply (2.7) to the Stokes wave in SRS, it is sufficient to

note that the Stokes wave is a functional of two complex
variables, 4,, and N. The dependence on N is linear. Conse-
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quently it is trivial to compute, and will not be considered
any further in detail. For a general function F, a double ap-
plication of (2.7) gives

F{4,6)4,;¢"}
— exp [ f dn B ()[8/64 ()]

+ B*(n)[6/84 *(17)]] Fl4@)A*ED) 29

where now all the stochasticity appears in the exponent oper-
ator. The expectation value of F'is obtained by expanding the
exponent, and resuming. The result is

(F)=e*F{4,4*},

where K is a differential operator,

(2.10)

K = Z J\dnl'"dnnd/{l'"dim Gn‘m(nl"'nn’il"'/lm)(n!m!)_l

X [8/8A (1,)]-+[6/84 (1,)]
X [8/84 *(A))]-[8/84 *(A,)]. @2.11)

In (2.11) the correlation function is the irreducible part of
the expection value of the product of » B-fields and m B *-

. fields. In the Bourret approximation we use, only the lowest

order term survives,
K, = fd?] dA G A)[8/84 ()] [6/64*(A)]. (2.12)

The advantage of this functional approach is that all the
manipulations involving stochastic variables have been car-
ried out, for a general function F. The cost of this closed form
result is the appearance of the functional derivatives. In gen-
eral (2.10) contains an infinite number of derivatives unless ¥
has the form of a finite polynomial, a condition which is not
satisfied by the Stokes field. However, the Stokes wave has
the form of an infinite power series in &, which is a simple
functional of the pump. This allows a systematic treatment
of the Stokes wave to all orders. The Stokes field may be
written as the sum of three terms,

'3
E.(.2) = E0) + j dE ‘e~ "€~ 54, + $IE.(E0).

(2.13)
In this formula
. (o02)"* ' " .
D Y. B (Y. | 2.14
& '\2) z,,:(n+1)! o €N4E) (2.14)
and
S '\2) = Z’%A (g)f dz _(Zl:_z_'zl_N:@',z'),
n . 0 .
(2.15)
where y is a simple function of the pump,
3
Y= L dE" A& MAXE"). (2.16)

Consequently, the expectation value of the Stokes field (or
intensity) involves the operation of e X on a very low order
polynomial in A and A4 * times arbitrarily high powers of y.
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Thus, the expectation value of the field is
(Efé,2)) =e"E [A,4*}, (2.17)

and expansion of the exponent, together with (2.13) shows
that we require the general term R, ,,, where

R, = (m)'"K"(y"(€£ N4 (E)A*E ).
If the intensity is required, then we need the term P, ,,, ...,
where

P = () K" (Y (EEDYT (E.£2)A (§)A ¥ )4 (£)4 *(52))
(2.19)

in order to compute e* | E, | *. This is discussed more fully
later.

(2.18)

lIl. Diagrammatic Analysis for the Stokes Field

The series (2.17) for the Stokes field requires the general
term R, .. Since R, |, ,, = KR, ,, there s a recursion rela-
tion, and we consider the first element R | ,, . By carrying out
the indicated differentiations, we obtain five terms,

R, = fdn d’ G (')

X [m(m — D™ =2 A (A *()4 €)A*E)

3.1)
+ my" 8 — 1A E)A*E) (3.2)
+ my™ =8 — E)A(MA*E) (3.3)
+ my™ "8 —ENAE)A*(n) (3.4)
+ x"6(n" — £)6(n — &N (3.5)

These terms may be represented diagrammatically for com-
pactness. In Fig. 1 each term in R ¢ is displayed. Each y is
represented by a pair of dots placed in a vertical line. The

unmatched dots represent the fields at £ and £ . The upper
row of dots is associated with 4, the lower row with 4 *, and

. (;) ) 2 (4)
m:\\, [“\

(A)

N(S; [ ] [ ]
« e e e T

(B)

FIG. 1. Elements of the diagrammatic series for the Stokes field. Each pair
of dots represents y, each line a correlation function. These diagrams repre-
sent terms in R, , but superposed for compactness.
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each pair represents the fields at a point &;, for the ith pair.
Each line in the diagram represents the correlation function
G,sothat R 4 is obtained as the sum of all diagrams contain-
ing six pairs in which one line has been inserted. Thus, the
line (1) represents the term (3.1), etc., and the diagrammatic
series for R| 4 contains 49 terms. There are thirty diagrams
of type (1), six each of type (2), (3), and (4), and one of type
(5). (Most of these have been superposed on one diagram in
Fig. 1 to save space.) The rules by which algebraic expres-
sions are associated with diagrams are straightforwardly ob-
tained from R, ,, . They are as follows:

(1) Each free dot represents A (&) (4 *(£)) if it is in the
upper (lower) row;

(2) Each attached dot represents unity;

(3) Each line joins a dot in the upper row at £, with one
in the lower row at &,, and represents G (£,,£5);

(4) Each intermediate coordinate is integrated from £ to
£, the coordinates of the unpaired dots.

Using the recursive relation for R, , it follows that it
possesses a diagrammatic expansion exactly analogous to
R, ,..Thus, R, ,, is represented by the set of diagrams in
which # lines are inserted simultaneously, and interpreting it
according to the rules just given. This is most simply demon-
strated by computing R, ,, and then proving that each appli-
cation of K|, the lowest order term in K, replaces one 4 and
A *by acorrelation function. The permutation combinations
may easily be shown to be given correctly by this procedure.
In this way, the complicated algebraic problem is reduced to
a simpler topological one.

Consider the general term R, .. It is the sum of the n-
line, m-pair diagrams. Each diagram in this series may be
subdivided into simple irreducible components. A diagram
or a subdiagram is termed irreducible if it cannot be separat-
ed into two parts without severing at least one line. The sepa-
ration test refers to separating pairs from each other and not
to separating dots from the same pair. Then a loop is defined
as an irreducible diagram containing as many lines as pairs.
Thus a loop cannot involve one of the unpaired dots, and has
no unattached dots. A chain is defined as an irreducible dia-
gram containing exactly two unattached dots. Thus, a chain
cannot involve one of the unpaired dots either. However, the
connected part of the diagram is defined as all irreducible
parts which involve the unpaired dots. These have the same
topological structure as chains, extending into the diagram
from the unpaired dots at each end. Thus, the connected part
is either the product of two chainlike terms, or consists of a
single chainlike term involving both unpaired dots. In this
way an arbitrary diagram may be written in terms of its irre-
ducible components: the connected part, chains, loops, and
free pairs. Intuitively, a loop is a ring of pairs, a chain is a
chain of pairs and the connected part contains the chains of
pairs which are connected to the unpaired dots. The compo-
nents are illustrated in Fig. 2.

This decomposition allows the full series for the Stokes
field to be written as an integral over sums and products of
chains and loops. For example, the 3-loop is
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s =N

(A)

S =<

(B)

FIG. 2. (A) A term in R, ,, containing a 4-chain, a 3-loop, a 1-loop, and a
free pair. (B) A reducible decomposable into a 4-loop and a 2-loop.

&
L,= L dédEdE, G (§LE)G (666G (656),  (3.6)
and the 2-chain is
&
C, = L d§1d§2A *(gl)G (§I,§2)A (§2) (37)

If the B field is Gaussian noise and the 4 field is slowly vary-
ing, these are simple integrals obtainable analytically in
terms of tabulated functions.

The general term R, ,, may be decomposed into a con-
nected part and a remaining factor, the vacuum diagrams. "
Thus,

R,,.=YViH,.?,
pq

where V denotes the vacuum diagrams involving p lines and
g pairs, and H ;,_# denotes the connected piece in which
n — p lines are mserted into m pairs leaving exactly g pairs
untouched. The number of ways this can be done is given by
the binomial coefficients. Thus if 4 © denotes the connected
pieces involving b lines and ¢ pairs exactly, leaving no un-
touched pairs, then

(3.8)

R,,= S Vehi 7 CT,

m-—gq

(3.9)

where C 7 is the binomial coefficient m!/g!(m — g)!. The
vacuum diagrams are therefore those diagrams in which p
lines are inserted into ¢ pairs without involving an unpaired
or external dot. In general Vinvolves free pairs. Their contri-
bution to ¥ may be separated out as follows,
ve =Y Y'urzicy.
[}

g—1

(3.10)

Each free pair contributes y, and the remaining part of the
vacuum diagram, U ? is defined as the set of diagrams in
which b lines are inserted into ¢ pairs, with no free pairs left
over and no unpaired dots involved. Thus U must be a sum
over loops and chains. The lowest order terms in U are as
follows:

Ud=1,
U'l=2C.

Ul=L, Ul=L,+ (L), (3.11)
(3.12)

The number of chains in U [is given in generalbyn, =5 — 7.
If 7 lines are inserted into s pairs, there must be 2(s — )
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unattached dots, and since each chain involves exactly two
unattached dots, the result follows.

Separation of U into loops and chains is achieved by
considering that part of U in which & lines and pairs form
loops. Thus,

=SYULU 5 C (3.13)
3

From (3.13) and (3.10) it follows that ¥’/ contains exactly

g — p chains.

The chain term U_ may be written in terms of the irre-
ducible diagrams by dividing the k pairs into collections of
k;, associating each k; with a loop and summing over all
possible decompositions. Division of & pairs into collections
of k; can be accomplished in k !/ Ik;! ways. Each group k;
forms a chain 2k} ways. Thus, if each chain is of different
length, each element in the chain term U, has the form

U, ~2"‘s!CS‘ng---C(" , (3.14)
where s = E;‘ 5. However, if two chains have the same

length, then double counting must be avoided. The result for
the chain term is as follows,

vi=ss I (2 G’

ft ) k=2

5[ 3 tk]é[s,z ktk].
(3.15)

For each chain of length k, the chain may appear in U, £,
times. All possible appearances and powers must be includ-
ed, consistent with the constraints on the number of pairs
and chains.

Similarly, the loop terms U; may be written in terms of
the irreducible loops. However, each group of k; pairs may
form an irreducible loop (k; — 1)! ways. To prove this, con-
sider the loop with b pairs. The next pair may be included b
ways to form the irreducible loop with & + 1 pairs. Conse-
quently each diagram for & pairs gives b diagrams for b + 1
pairs. Induction then gives (b — 1)! for the degeneracy of the
b-loop. Thus, the loop term is

uvi=561y ] =L & ’(/k)uk

fuc) k=1 u!

[bzkuk] (3.16)
The derivation of (3.16) is entirely analogous to that of
(3.15).

The connected piece may be simplified by recalling that
it has a particularly simple topological form. In fact, it is
either the product of two chainlike terms or a single chain-
like term,

hi=s[8,,, hP+6, 40P (3.17)
In this expression
hD= f: d5,dé,dE G (560G 15)G(EE)  (3.18)
and
hP=3hPh?,, (3.19
where I
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3
B = [ dedeendt, G € EIGEEGE LEME)
(3.20)

and

3
h® = | dedendi A NEIG Gk )G E£IGE0)
' (3.21)

The essential differences between these expressions and the
chain terms are apparent. Note in (3.18) that there are s + 1
correlation functions in 4 .

The remaining step in the diagrammatic analysis is to
collect the various terms in the Stokes field expansion (2.13).
Applying the noise operator to each term in ¢, [Eq. (2.14)],
gives

X (A (€)4 (€ /m)
=Y R, ,/n!

= Y R(AQ_ 4+ 3D, (3.22)

g=0

where (3.9) and (3.17) have been used. The term R, is the
vacuum contribution,

R, = S Vi/q. (3.23)
p

Using the previous expressions for ¥, this may be expressed
in the following form,

_ < XULUL

R, = = TSlgr+k+11. 3.24
g o kin lg ] ( )

The 6 function may be written as a contour integral
Slgr+k+1]= (27r1')“fdw o tktIa (3.25)

where the contour is any region including the origin. Then
the vacuum term R, separates into three terms, each of
which separates into simple components. The result is a sim-
ple integral expression

dw e’

R,= — (3.26)

2miew
where the exponent P is a sum over the chains and loops,

P@=@+L)o+ 3 QCi+Li/k)*  (327)
K=2
Finally, the expression for ¢, in (2.14) is obtained,
P
Ko, = f dve_ 1), (3.28)
27w
where
n+q+ Kk
filwy=3 (002 T i @y, -a (3.29)

ng (n+g+ 1
Note that Pand f| are functions of £ and £ ', and that w has the
dimensions y ', as written. Appropriate dimensional param-
eters may be inserted to make & dimensionless, if it proves
useful to do so.
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IV. DIAGRAMMATIC ANALYSIS FOR THE
STOKES INTENSITY

The exact result for the Stokes intensity is obtained
from (2.4). However, rather than computing the Stokes in-
tensity directly, it is more convenient to evaluate the noise at
the Stokes frequency, by examining the mean square devi-
ation of the field amplitude. This is a real positive quantity
defined as follows,

SE? = (EE*> — (E>(E>*. 4.1

Expanding the Bessel functions in (2.5), one obtains a form
for the mean square field deviation similar to (2.13), etc., for
the mean field. The major differences are the appearance of a
term involving the intrinsic noise of the medium, and a dou-
ble integral representation,

5E2:Ji d§ exp[ — I'(§ — §)1EL5,,0)

x [ dexpl — I~ ENEIGOW + ),
4.2)
In this expression the integrand has the following form,

Y= e ¢1(§1,Z)¢ ;@2»2) — ¥ ¢1(§1,Z)9K¢ ;@:J)- 4.3)

Here ¢, is given by (2.14), and e ¥ is the noise operator intro-
duced earlier. The second term in the integrand depends on
the correlation function of the noise source. Because the ve-
locity of the optical phonon may be neglected, this source
has no correlation between neighboring points. Thus

(NEON*Zt")) =Nz —-2VGy(E - &) 4.4
and its contribution to the integrand is
Yy = NGy — &)t |4 ()]
n+m+1 n m
>< Z (01022) X(g)gl) X(§y§2) . (45)

o oo(n +m+ 1)(n!m!y

[Akhmanov er al.® assume that G, is §-correlated. However,
this implies that the relaxation time of the thermal noise in
the optical phonon is much shorter than the transverse relax-
ation time of the molecular excitation. This appears to be
questionable, since both phenomena originate in the same
mechanism, namely dephasing collisions. Thus G, has a
correlation time comparable to 1/ and cannot be set equal
to a 6 function under the £ integrals. Equation (4.5) is the
basis for Akhmanov’s treatment of the case of slowly relax-
ing molecular oscillations.]

In order to compute the variance, §E, and consequently
to obtain the intensity, we shall, for the moment, ignore the
term ¥, and note that the second term in (4.3) has already
been obtained in the previous section. The first term,
through (2.14), gives rise to expressions of the form of
P, . » defined in (2.19). These may be evaluated by a dia-
grammatic approach which is exactly analogous to that used
for the field. An inessential complication is the appearance
of three times, £, or equivalently the appearance of two types
of pairs, depending on whether the arguments in y are (£,£))
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RSNSOI X

J |

(£ &) &, £,)

FIG. 3. Elements in the diagrammatic expansion for §E. The first pair is not
integrated over, but is evaluated at £. The term displayed is a contribution to
Poys-

or (£,£,). In Fig. 3, a typical term in the diagrammatic expan-
sion for the variance is displayed. The unmatched dots repre-
sent the field at £, and &, and the first pair (Ihs) is not a pair
tobeintegrated over, but represents the product 4 (£ )4 *(&).
The pairs are divided into two groups, which may be con-
nected by lines regardless of the group to which they belong.
The rules for interpretation of the graphs are otherwise the
same as for the mean field diagrams. The result is a decom-
position of diagrams into connected and vacuum parts, ex-
actly as above, and subsequent decomposition into chains
and loops. However, these terms must be generalized some-
what in order to accommodate the existence of two types of
pair, and the ordering of the integrations associated with a
particular sequence of pairs.

The general term P, ,,, - may be decomposed into a
connected part and a remaining factor, the vacuum dia-
grams. Thus

P = 2 Vg Hoh 4.6)

: mqm'q"

peq
where V denotes the vacuum diagrams involving g pairs of
type (1), (£,£)) and ¢’ of type (2). Clearly, the decomposition
into simpler parts is exactly analogous to the mean field case,
but where the indices must follow each type of pair explicit-
ly. Thus, in the separation into vacuum and connected
pieces, and the subsequent decomposition of the vacuum
terms, the variance expansion carries two sets of indices,
whereas the mean field expansion carries one set. This is the
only major difference in the systematics of the expansions.
However, the terms which can contribute are more varied
and numerous in the variance expansion.

The systematics of the decomposition of the vacuum
terms into chains and loops have already been detailed. On
carrying out this process one obtains the following result,

Roy = Z Ve 799"

p

= (2mi) J dw,dw, e2/w} T 0} 7. 4.7

The exponent R is a sum over generalized loops and chains

Q(a)l,a)z) :Xlwl +X20)2 —+ z (2C[ + Lkl/(k + l))

O 92 41y 4.8
—k—-!—T( + (4.8)
where y, , are given by
3
Xio= [ 1@ e, @4.9)
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and the loops and chains are as follows:

Ly=kWY/k+DY LY, (4.10)

Coy =k (k+INY CF, 4.11)
The parameter o is a label taking (k + /)!/k /! values, which
labels the ordering of the integrations in these elements. For
example, L, ,is proportional to L, , containing only one type
of integration, whereas L { , contains k integrations over the
range (£,£,) and one over the range (£,£:). Thus each permu-
tation of the orders of the integration limits must be includ-
ed. All the degeneracy factors have been removed in (4.8)
and in the definitions (4.10) and (4.11) so that only distinct
orderings are to be included in the sums indicated in L,; and
C,; . Each ordering has weight unity. Finally the sum in (4.8)
is over the range 0<k,/ < o, but excluding the point
k=1=0.

For direct comparison with the mean field expansion,
the 2-, 1-loop is

& £ &
L, =L dg'Jg de L dE" GEE™)
X GE"E")GEE. 4.12)

There is only one type of 2-, 1-loop, since all others are the
same as this by permutation symmetry. There are, however,
three distinct 2-, 1-chains, according to the position of the
(£,£,) integration.

In the case £, = &, the distinction disappears and at this
point we have

Lkl = Lk + b
and
Q(w,,w,) = Plw, + w,). 4.14)

The distinction between field- and variance-expansion quan-
tities is in the number of arguments or indices involved. It is
straightforward to show that in this case, (£, = &,), one of the
w-integrals may be performed analytically, giving the fol-
lowing result, which is necessary for consistency,

Ckl = Ck + b (4' 13)

(4.15)

q9+4q"
The connected pieces form three categories according
to the number of chainlike terms in them. From (4.6)

H? =C;”C;’7'h"

mq,m'q’ m-—gqgm —g

(4.16)

in a simple generalization of (3.9), and the reduced term is
expressible as a sum over products of chainlike terms,

B =suS[rs+1t+21hD +8[rs+t+ 1172

+8lrs+110 Q1. 4.17)
The first term is a product of two chainlike terms,
h .(v:) = 2 (b, _ 1,rﬂ(§,§1)bg v )
i
+b,_ i, 6L (E,E)) CiC /s, (4.18)

where each term is a sum over different orderings of the
integration limits. For example,
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b(&5) =Y b8, (4.19)
where
biEE) = [ dirde 6 EEGEE) 420

contains r (£,§,)-limits and s (§,£,)-limits, and o labels their
order of appearance. Note that each ordering is distinct, so
that there are C | * * terms. The second term is a sum pro-
ducts of three chainlike terms,

h §12} =P, (5,£5528)

+ P, (£,6:626)) + P (62,6:6,61) 4.21)
where
P (€.85606")
= ,; bil(g’gl)d;m(g Vi (E2)

X (% Wimin) 8 [s,i +j + k 18[6] + m + n]

“4.22)
and d is a sum over integration orderings, d = 2d ¢,

d7,E) = f dE ds AEIG (E ke, )G (ExE). (423)

Again all orderings are distinct. The last term is a product of
four chainlike terms,

h E?) = z z dim(g )d;n(g )dkp(gl)d ;q(§2)

ki mnpq
X @k W imintplg!) '8 (s,i +j + k + 1]

X 8ltym +n+p+4), (4.24)
where each term has been defined previously. Despite the pro-
liferation ofindices, these terms have simple topological inter-
pretations. The first describes a diagram where two chainlike
termsjoin the unpaired dots, and donotend on one member of
a pair. The second describes a diagram just like the first, but
where one link in one of the two chainlike terms has been
removed. The third describes a diagram in which one link in
each of the two chainlike terms has been removed. On sum-
ming over all contributions consistent with the number of
pairs of each type, the quoted results are obtained.

The remaining step is the collection of all terms in the
variance expansion. From (4.3) and (2.14) we obtain

*$:612)4:(622) = 3 Ryy Fog (4.25)
where "
m4n+q+q+2
Fo = 2 (m(iaqzl DIt + ¢ + D!
X (B +h G+ ). (4.26)

This leads to the following integral representation of the first
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term in £ %. From (4.26), one obtains

o= [ 2290 05,0y, @27
Qriyww,
where Q is defined by (4.8) and
(4.28)

= o e, T
F ZF,” o Yo, 9.
99

The noise source term #/,, has a similar diagrammatic
expansion. The vacuum diagrams are identical to those just
obtained but the connected pieces are different. The appear-
ance of only two unmatched dots (the first pair) gives an
expansion similar to the mean field case

hiya=st[8[rs+1+ 1100, + Slrs+:1h2,].

(4.29)
Here
W05 = | de. dEfG €06 En) (4.30)
and
h(ﬁ)ﬂ=st_,-,,_l(é')d;@)(CfC;/S!t!), (4.31)

where d '*’ is a sum over permutations of the ordering of the
integration limits. Again one obtains an integral representa-
tion for the noise source term. From (4.5)

dw dw,e?

¢N (277_’.)2(01(02 N( 12 2) ( )
where
N? Zn+m+1+q+q’
FN = GN(§1 - 52)2 (Ulaz ) ,
0,0, wm(m+g+Di(m+q + 1)

1 2 —g -
X (hg + hSger oy 7.

V. APPLICATION: INITIAL BEHAVIOR

The formalism developed in the preceding sections
gives a general method of analyzing pump stochasticity. Un-
der certain circumstances, and despite the profusion of
mathematical symbols, the results for the Stokes wave may
be expressed in a simple and useful form. The method is
illustrated first by analyzing the initial behavior of the sys-
tem. In the interests of simplicity the coherent part of the
pump is taken to be a square pulse. Thus®

X@’gl)zlc(g'*é‘l)s (51)

where I is the intensity of the coherent part of the pump
alone. In computing the Stokes wave behavior, it is assumed
that a small plane wave signal is incident at the pointz = 0.
These idealizations best illustrate the effect of pump noise.

(4.33)

The initial behavior of the system deals with the region
£ — £’ 271, the correlation time of the noise component. In
this region the correlation function is given by*

GEsN =1, (5.2)

and is independent of . The various diagrams are trivial to
compute, and if

a=1~§&), -3
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the loops and chains of the field expansion are

L. =a" (5.4a)

C,=«ka", (5.4b)
where « is the ratio of the coherent and noise intensities

k=1I/1. (5.5)

From (3.27) the vacuum terms may be summed to give the
exponent P,
P=yw+2{(1 —aw)y' — 1 —aw] — In(l — aw)
(5.6)
The series for P converges only if |aw| < 1, thus restricting
the contour of the complex integral, to avoid the singularities
of P at aw = 1. The connected diagrams are

=1 ¢ 5.7
h? = I(s+ D', (5.8)

and from (3.29) the connected pieces may be found using the
formula, valid for all x,y,

SxY/(n+ g+ Di=(x—pyiEe —e) (5.9
ng
Thus,
— _a_ _ i -1 ba _ ,b/w
fi= bI,(I +« P a) (ba w) (e e’’?),  (5.10)

where b = 0,0,z. Inserting these expressions into (3.28), and
noting the contour restrictions gives

K g.(E0z) = bl,(l np 5‘3— a) T (bae), (.11)
o
where
do x ( 2 )]
J(x,p) = _— — -2 —
(x3) JZm’(l—a)2 exp[ ] ty 1—0o 7

(5.12)

around a contour |o| < 1. It may be written as a sum over
Laguerre polynomials and Bessel functions,

Jep)= & 3 (/)" D2 (— 1YL D~ y)

n=20

1, ,@V 2xp). (5.13)

This result describes the initial behavior of the Stokes field
until either £ ® 7 or the intensity is comparable to the pump
intensity.

In the limit of no noise, @ —0, and k — o but xba
remains finite. Then it is straightforward to show that the
purely coherent results (2.13) and (2.14) follow from (5.11)

and (5.13). In the opposite extreme of pure noise, x — 0 and
(5.13) gives a remarkably simple result,

e*d, = blLexp[bI(£ — £')]. (5.14)

From (2.13) the gain experienced by the Stokes field is
exactly

(E(£2)/E,) = Gﬁ > {exp[4TE(G—2)] — 1} + 1.

(5.15)
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Here G is the nominal gain
G=ylz (5.16)

where ¥ is the steady-state gain coefficient for the Stokes
intensity under coherent pumping conditions

y = 20,0,/T. 5.1

The field behaves initially in a manner reminiscent of a phase
transition. For weak pumping, the field tends to a finite limit
as & increases, but for strong pumping, the field grows
exponentially.

The variance of the field may be found analogously.
Defining

a=I(—-¢&), (5.18a)

B=1¢—¢&), (5.18b)
gives the loops and chains of the variance expansion,

Ly,=a"p’, (5.19a)

Cu=xa"B! (5.19b)
From (4.8) the vacuum terms give the exponent

Q =« f(aw, + fw,) — In(1 — aw, — fw,), (5.20)
where

f)=2(1—x)'—2—x. (5.21)
The connected pieces are conveniently written

hP= CPa’B'YD, (5.22)
where

CO= (2231 1,,I%) (5-23)
and

Y@= Ccsvici+ (5.249)

Using (5.9) the function F, defined in (4.28), may be written
in a closed form, from which the variance expansion follows,

. 314,
K 2 r
G e aﬂ) @By + =
a3 \? , O
X (aaaﬁ) b+ ZI’W] ‘
(5.25)
where
=J d01d02
@my (1 —o)(1 — az)(l -0, —0a,)
X exp(/cf(a1 +02)+ — + bﬁ) (5.26)
1 (25}

This integral does not have a useful repesentation in terms of
the standard transcendental functions.

In the limit of no noise, (5.25) and (5.26) reduce to the
square of the coherent pump result for the field. Consequent-
ly the variance vanishes,

SE?*=0. (5.27)
In the case of pure noise, the integral J is easily evaluated to
give

J=e @B [1.(2b(@B)"?) — 1] (5.28)

D. Eimerl 1819



Inserting this into (5.25) gives the general result
J d§dg,expl — M (26 — & — §2)]eK¢x(§1aZ)¢l(§2,z)

= S [c Grereyny, (529
n=1

where
Cxy)= e x"[1+y@(ln+ 1y —x)/n+1] (530)

and @ is a confluent hypergeometric function. The sum in-
creases without limitas £ — « if G, >1, otherwise it tends to
a finite value. This qualitative behavior is similar to that of
the field, but the threshold is smaller by a factor of 2. More
detailed comparison with (5.14) shows that the variance is
dominated by the first term in (4.3), and is much larger than
the mean field squared. Thus the Stokes wave is mostly
noise. That is, for G —

SE/EX=2e"I(25) — 3e* + 2 — 1, (5.31)
wheres =1 GI'é, and for G =2

SEY/E}=4[125) + 1,(25)] — 35 —4s—4, (5.32)
while, for G < 1

SEYE}=1/G™ (5.33)

Neglecting the contribution of the mean field squared to the
mean intensity, the gain experienced by the Stokes intensity
may be written approximately

(I/1,)> exp[2Q2G — DTE] + 1. (5.34)

Of the two extremes, pure noise and no noise, the for-
mer can be much more effective in producing gain at the
Stokes frequency. The coherent result, obtained from (2.13),
is as follows,

L/, = exp[2G(1 — )], (5.35)

where 7 is a function of I'§ and G which tends to zero as

& — oo and which is negligible for I'£ * G. The coherent case
has a steady state limit, whereas the pure noise case increases
with £ until either £ > 7 or pump depletion is significant. For
small £, the coherent case grows slowly in time,

I, /I~ exp[2(GTE)"]. (5.36)

Again, this is in marked contrast to the noise pump case.

Vi. CHAIN APPROXIMATION

The correlation function for Gaussian noise is

GEE&)=1expl —(€— &)/, (6.1
where 7is the correlation time. The exact expressions for the
loops and chains obtained using (6.1) are not simple in gener-
al, and do not allow an analytic solution. However, useful
analytic expressions may be obtained for the experimentally
important case where the noise component is small com-
pared to the mean pump field. In this case the loops other
than L, may be neglected compared to the chains; hence the
name chain approximation.

The chains obtained from (6.1) are well approximated
by the following:
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C,=kA(a/1)", (6.2)
Cp=ka* B'(1/ + 1724 )k +1=D72 (6.3)
where a,f3 are given by (5.18) and A, are defined by
Ar=14+7"[¢& - &YV, 6.4)
u=AEE") (6.5)

These expressions are least accurate for § — £ '~ 7, where the
error is small (a few percent), but away from that region the
error is negligible. The mean pump intensityisf/,, =1, + I,
for which the nominal gain for the intensity of the Stokes
wave is

G=vyl,z. (6.6)
The ripple gain is defined as in (5.16),
G, =yl z 6.7)

The Stokes field is given by (2.13) and (3.28). The com-
plex integral is straightforwardly evaluated using the meth-
od of steepest descents. The field itself may then be found
using a similar technique for the &-integral. In the transient
regime the result in lowest order is

E~E©exp[QGTEY? —TE+ G, TE/A] (6.8)
and the chain approximation is valid in the region
G, < (G /2l (6.9)

In the steady state regime, the Stokes field in lowest order is

E~ E@exp[G/2+7G, 'r/(1 +g)"], (6.10)
where

g =2m"I'r/G. (6.11)
The chain approximation is valid in the region

G, < (G /21", (6.12)

Thus as the correlation time increases, the approximation
fails and the initial system behavior results of the previous
section apply.

The lowest order chain approximation is essentially the
same one used by D’yakov, and Pasmanik and Friedman.
Their results correspond to retaining no loops and only the
four lowest order chain C,, C,,, C,,, and C,,. The next higher
order chain approximation may be obtained by expanding
P(w)in3.27inapowerseriesinf = I, /I, — I,,and truncat-
ing the chain sum at C. It is simple to include the loop term
L,, to obtain a slightly more accurate expression. The com-
plex integral may then be evaluated using the method of
stationary phase. The next higher order contribution to the
gain exponent is found to be

—2(G,/ G )2(2(71“53 )24 (6.13)
in the transient regime, and
— 772G /(1 + g% (6.14)

in the steady state regime, where g is given by (6.11)

The noise at the Stokes frequency is given by the vari-
ance and may be evaluated analogously to the field, using
(2.13) and (4.27). In the transient regime the ratio of vari-
ance to intensity is given by the following,
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A= —In(1 —8E*/CE?%)

=2G, Te/A — &G, / GA YQGIEy” (6.15)
and in the steady-state regime by
4= m[GIr(l +g)y" —3G%g(1+¢)"]. (6.16)

It isimmediately clear that unless I'7 < 1/G, the Stokes wave
is mainly noise. Thus the condition for reproducibility of the
experiment is

GIt<l.

This condition does not seem to be a stringent requirement
for molecular vibrational Raman scattering.

VIl. LOOP APPROXIMATION

The chain approximation describes pumping by a
sources with a strong monochromatic, i.e., nonstochastic
component. In the other extreme of pure noise pumping,

A = 0. Again, this case does not allow a simple analytic re-
sult in general, but good approximations are available. If
A = 0, the chain terms vanish, resulting in the loop
approximation.

The only surviving connected diagrams are 4 (V. In gen-
eral, these diagrams are complicated analytic expressions,
but are approximately given by

h{V= I & /A ) expl — §/7(s + D). (7.1)

Thusevenif € > 7, if sis large enough, 4, may be significant.
Since P (w) is nonsingular at @ = 0, only the singular part of
the connected diagram sum is required. From (3.29), this is

f(a)) _:web/men hsxl)
= 0l Y (@oYexp| — Y76+ 1), (1.2

where @ = a/A. In the limit w& — 0, the sum reduces to the
lowest order term, but in the limit dw — 1 it gives a singular
result,

limf, = wle®’“(1 — Gw)™. (1.3)

If the complex integral is dominated by the region dw ~ 1,
then the higher order connected diagrams dominate the inte-
gral, otherwise only the lowest order diagram contributes.
The loop diagrams may be evaluated in theregioné — &' > 7
to give the following contribution to (3.27)

P(0) = ao® (dw,%,l), (7.4)

where @ is a generalized Riemann function.”

Consider first broadband pumping "7 < 1. Then the
factor b&@ € A and the complex integral is dominated by the
region @ — 0. By use of the method of stationary phase, one
obtains

eXd, = (1 3/4m)(b@)"*bI G exp(2G, T E ). 1.5
A similar method applied to the £-integral gives the steady

state gain,
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E,=E® exp[%(G,I"r)w]. (7.6)
This expression is valid for strong, broadband pumps
GIr>» 1, I'r<(G/8)" (1.7)

The variance expansion gives similar expressions, and the
complex integrals are dominated by the region @ — 0. The
loop sum is

0 = (aw, + f)® (@w /A + Bor/i3,1) (7.8)

and the variance is extremely small,
SEY/(E?*) =0I1/G). (7.9

Thus the intensity gain is twice the field gain, and the Stokes
wave is not noise. This may indicate the possibility of con-
verting broadband pumps to narrowband Stokes waves in
the high gain region as well as the threshold region.?

For narrowband pumping /7 > 1and & > A. Thus the
complex integral is dominated by the region dw ~ 1. Again,
use of the method of stationary phase gives

Kp, = 27y exp[G,rg/u +1+EOA | (110)
where £ is the Riemann function. The steady state gain is

E=EQexpV 7 PrG (1 +¢Q/3V 7 Ir) (111)
which is valid in the region

ey EQr, (7.12)

The variance expansion gives similar expressions and shows
that the Stokes wave is noisy. The complex integral is domi-
nated by the region dw, + Pw,~ 1, and the variance is

SE*/(E") =1— exp(—V 7 I'rG). (1.13)
The basic behavior of the system as the pump is broad-
ened is clearly illustrated here. For an almost monochromat-
ic noise pump where I'7 > 1, the Stokes wave grows expon-
entially in time according to the results of Sec. V. If pump
depletion does not occur, a steady state configuration is
reached where the gain is given by (7.11) and (7.13). This
configuration is reached in a time ~ G, **7. As the pump is
broadened the gain is reduced and the variance of the Stokes
wave decreases. As I't € 1, the gain becomes nonlinear in
the pump intensity and the Stokes wave narrows dramatical-
ly. This situation is given by (7.6). Qualitatively, these results
agree with the predictions of D’yakov and Akhmanov. How-
ever, the boundary between broadband and narrowband
pumps was not precisely known. It is given by (7.12).

Viii. DISCUSSION

The preceding sections have presented a method of ana-
lyzing pump stochasticity using functional analysis to gener-
ate a diagrammatic expansion for the expectation values of
the Stokes wave amplitude and intensity. The meaning of
this expectation value is defined in terms of an ensemble of
experiments. It denotes the mean value of a quantity mea-
sured in a large number of experiments. The variance §E? is
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the mean square deviation of the field amplitude in the en-
semble; it is a direct measue of the reproducibility of the
experiment. This gives a precise definition of noise as it is
used here. It is also a critical parameter in evaluating both
past experiments and the performance of future systems, as
indicated in the Introduction.

The diagrammatic, systematic approach leads to repre-
sentations of the mean quantities in terms of a contour inte-
gral and a real integral. From the point of view of obtaining
general results, there are several ways to evaluate them; the
most promising complex technique appears to be the method
of steepest descents. In fact, the integrand is automatically in
a form suitable for this. The real £-integral may be evaluated
analogously, or by Gaussian quadrature, as suggested by the
exponential damping factor. Although the results are not
simple in general, under certain circumstances simple ana-
lytic expressions are found which can indicate much about
the general behavior. A particularly interesting point arising
out of the initial behavior results is the existence of an abso-
lute instability, rather than the conventional convective in-
stability found for the coherent pump case. For that region
of the medium for which G, > 1, the Stokes intensity grows
exponentially in time. The instability is cut off either by
pump depletion or by finite correlation time effects. For ex-
ample, if the correlation time is very large, the expectation
value of the Stokes intensity gorws until it is comparable to
the mean pump intensity,

I~ exp2G,T¢. (8.1)

In this case the Stokes wave is mainly noise. Thus the abso-
lute instability indicates that there is a large uncertainty as to
the Stokes intensity in any particular experiment in the en-
semble. The experiment is essentially irreproducible. On the
other hand, if the correlation time is smaller so that

7 < G/2IG?, (8.2)

then the instability is no longer absolute, but convective. A
quasi-steady-state solution exists in which the mean Stokes
intensity approaches a finite limit as £ — oo, but grows ex-
ponentially in z. The convective instability is cut off either by
pump depletion or by the boundary of the medium. Note
that the right-hand side of (8.2) varies as z ' so that the longer
the medium, the shorter the correlation time must be, to
prevent the absolute instability. From the chain approxima-
tion results it is clear that the Stokes wave is not necessarily
all noise. If the correlation time satisfies

It <G, (8.3)

then (6.13) shows that the Stokes wave has a small noise
component and therefore the experiment is reproducible.
Thus a small correlation time may bring the absolute insta-
bility to a convective one, and, in so doing, cause the experi-
ment to become reproducible. Thus for G, > 2, the limits on
the pump noise required for reproducibility are given by
(8.2). Under these conditions the gain experienced by the
Stokes intensity is

I~ exp|G + 2G7*7(1 + 4m(r/G )" + 0 (G 2G))
(8.4)

in the steady state regime. This clearly demonstrates the role
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of the correlation time in mollifying and suppressing the po-
tentially debilitating instabilities in the system.

Similar results apply to the case of pure noise pumping,
where the Stokes wave is absolutely unstable for I't - o,
but as /"7 decreases to the region

I'r <(G,/8)" (8.5)

the gain becomes nonlinear in the pump intensity, but the
variance of the Stokes wave becomes very small. This may
indicate that the Stokes wave is narrowband. The gain at the
Stokes frequency is

1= 10 exp 261 | (8.6)
under these conditions.

The theory presented here is applicable to systems satis-
fying two important constraints. The first is the expression
for the pump field (1.1), where the noise component B satis-
fies (1.2) and has no higher order correlation functions. This
is, of course, the simplest way to introduce noise. However,
higher order correlations undoubtedly exist, and, if desired,
they may be incorporated into the diagrammatic approach
as follows. In addition to the diagrams already discussed one
must include more complicated ones where the dots are con-
nected not by lines but are connected to several others, giv-
ing rise to star diagrams. This is best illustrated by an exam-
ple. The fourth order correlation function appears in X
definedin (2.11). It is represented by a diagram in which four
lines emanate from a single point and end on dots, two from
the upper row and two from the lower row. This four-point
star is to be included with the line (i.e., a two-point star) in all
possible combinations and permutations, leading to a series
similar to the one for the two point star. Clearly the #,mth
order correlation function is associated with an (n + m)-
point star joining » dots from the upper row and m from the
lower row. Although these expansions have been written
down, a systematic study of them has not yet been carried
out, in the belief that most of the important results are evi-
dent in the lowest order expansion.

The second constraint is in the restriction to plane
waves. Not only are the spatial analogs of the temporal ef-
fects important, but there may be spatial effects with no tem-
poral analogs; for example, transverse profile effects are ger-
mane to the study of amplified spontaneous emission. The
value of the plane wave results lies in their rigor, and their
potential for providing insight into more general systems.
The spatial question will be the subject of further studies.
Similar considerations apply to dispersive media, or the in-
clusion of a longitudinal spatial correlation length rather
than a transverse one. It is likely that dispersion weakens the
instability just as transverse stochasticity does. If the phase
of the pump diffuses too rapidly for the molecular vibrations
(or the idler wave) to follow it, then the instability is sup-
pressed. One may speculate that this temporal phenomenon
has spatial analogs. Defining a longitudinal coherence
length L,

L = z6n, (8.7)

where 8n is the difference in refractive indices at the pump
and Stokes frequency, and a transverse coherence time
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= h/c6, (8.83)

where /, is the transverse correlation length of the pump and
6is the root mean square angle between the pump and Stokes
waves’ directions of propagation, an effective correlation
time is given by

Vrg =17+ 17+ c/L. (8.9)

Replacing 7 in (8.4) by 7. gives the gain which may be
expected at the Stokes frequency. In the various limits dis-
cussed by Akhmanov® and by Pasmanik and Friedman,’ this
speculative prescription duplicates some of their results. It
displays the suppression of the instabilities by longitudinal
incoherence as discussed by Akhmanov,® and also the trans-
verse effect observed by Zubarev er al.' Regardless of this
speculation, the nondispersive plane wave case is expected to
show the least controllable behavior, and forms an upper
limit to the effects of pump stochasticity.
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Electrical conductivity of polycrystalline materials
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The problem of the determination of the macroscopic conductivity of statistically
homogeneous and isotropic polycrystalline materials in terms of the principal values of
the conductivity tensor of the constituent crystals is considered. A perturbation
expansion, in terms of correlation functions with an optimal value of the zeroth-order
estimate of the effective conductivity, is derived in which a separation is established into
texture dependent and independent quantities. Consistence with the analogous expansion

for the effective resistivity is demonstrated.

1. INTRODUCTION

In a polycrystal, a solid composed of randomly oriented
crystalline regions, the orientation of the conductivity tensor
varies with position whereas the principal values are every-
where the same. We restrict ourselves to variations of the
orientation that are conveniently described from a statistical
point of view: We exclude, for instance, periodic variations
with position. Ensemble averages like the two-point correla-
tion function (o {r )o,,(r,)) are determined by choosing the
same points r, and r, in each material sample and averaging
over the ensemble of samples. Volume averaging is accom-
plished by taking the two points through the whole volume
of the sample, which is eventually brought to infinity, keep-
ing their relative position the same. With the help of an ergo-
dic-type hypothesis we equate ensemble and volume aver-
ages, thus enforcing statistical homogeneity. The effective
value of the conductivity tensor is defined by

(J,) = T (E)), (1.1)
or equivalently’
(J,E)= 0?;<Ei> <Ej> (1.2)

Among the earlier proposals for the effective conductivity
o* of a statistically isotropic polycrystal are the “parallel”
effective value by Voigt,?

o* = %(crl + 0, + 03), (1.3)
and the “series” value by Reuss,’
-1
o*:[l(i+i+i)] , (14)
3 \o g, Lo

whereupon Hashin and Shtrikman* showed by using vari-
ational principles that these values actually serve as bounds.
The use of a perturbation technique was proposed by Beran'
and developed further by Molyneux,* Fokin,® and Kroner
and Koch.” In Sec. 2 we give a modification of the procedure
of Hori® giving a perturbation series as the formal solution,
with this difference that he considers heterogeneous materi-
als which are locally isotropic. Since it is known that o* lies
between certain bounds, it is not obvious that we should start
a perturbation expansion with one of these bounds as the
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zeroth-order estimate of o* but rather with a value in be-
tween, so for the time being we take an arbitrary value A
between these bounds as the zeroth-order value of o*: The
notion “order of magnitude” permits this freedom of choice.
For reasons of mathematical analogy the results are also val-
id for the effective dielectric constant, thermal conductivity,
and magnetic permeability, and there is a parallel approach
for mechanical properties of composite and fibre-reinforced
materials. In Sec. 3 we calculate the low-order terms of the
perturbation series, and in Sec. 4 we derive the correspond-
ing expansion of the effective resistivity p*. Partly new re-
sults for the bounds of o* are given in Sec. 5, and the final
Sec. 6 concerns the derivation of a renormalized series for
a*.

2. PERTURBATION SERIES

We start with Maxwell’s equation in the case of station-
ary electrical conduction in the absence of an external mag-
netic field, with the continuity equation following from the
conservation of charge, and with Ohm’s law:

curlE =0, 2.1
div]J =0, (2.2)
J=cE. (23)

The first equation permits the introduction of the electrical
potential
E = — grad®. (2.4)

Combination of Egs. (2.2), (2.3), and (2.4) gives a second-
order partial differential equation with stochastic coeffi-
cients, which reads in indicial notation

d d
— g (r)— @) =0,
T4 5 PO
where Einstein’s summation convention is employed, stating
that summation over an index is implied when it appears
twice.

Dividing the conductivity tensor into two parts

a'fj(r) =4 (5,-j + plj(r))’ (2.6)
such that A does not depend on r, we can write Eq. (2.5) as

2.5)
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2
K ()= — 9 2.7
Ox? ax;
By using Green’s function for the Laplacian in unlimited
space we can formally solve this equation:

o€y = | dn d

|r1—r2‘ Ix,;

ad
A(r) — @ (1).
p.,r)ax ]

J

piry) P (ry), (2.8)

821

and after differentiating with respect to r,, we arrive at
1 Xi2;
E (@)= —f drz"'lz_
47 Jv r,

X,
where we define:ry, =r, —r,.
The usual boundary condition a(s)® (s) + b )V, ()
= 0, with s on the bounding surface, is replaced by the con-
dition that the average electric field (E) is a given constant.
We assume the perturbation parameter p;
= (0, — A8;)/A to be small as compared to unity:

2.9)

P (t)E; (ry),

sup |p(r)| <1.

Next we expand the electric field intensity E in a series

Em= S EP®=(Ey+ 3 E"@),

n=0 n=1

(2.10)

where each term E "V is of the order of magnitude of the nth
power of the perturbation parameter times the average elec-
tric field:

E®(r) = o(|p|"){E). @11)

Inserting Eq. (2.10) into Eq. (2.9) and equating terms of like
order of magnitude, we get

E(n)(rl)_ _J- lez
"12
a
X oy E)E ¢y, n=12- (2.12)
X,
Starting withn =1,
X 0
EO@)= [ an 2 L paxE), @1
rlZ X2,

and changing the set of independent variables r, and r, into
r, and r,,, we can write

8
EC@) = o [ drn 2O e+ r(EL). @14
"12 X12, j
Similarly for n = 2,
1 le: a
E®P(@r) = P'k(l’z)
@4m)? Jv r?z dx,;"

X [ ey 250 (6, 4 E,), @19)
r23 X23,1

and changing the set of mdependent variablesr, r,, r,, into
r,, ry,, ry; we get

Xk d

Jd X2,
12 23

r axlzj r; OX,
(2.16)

EEZ)(rl) =

Xij("n + 0P m(Fy + Ep + X E,L),

1825 J. Math. Phys., Vol. 20, No. 8, August 1979

and in general

1
Efn)r)z Jdr "'fdrnn
( 1 (417_)” 12 +1

X120 0 Fansim d
ra Xy ey ey
ijk(rl + rlz)"'pqs(rl + 1 +oe+ L, + l)(E9>

(.17

Assuming averaging to commute with differentiating
and integrating, the average value of all terms of the electric
field (E (), n>1, vanishes because the #-point correlation
function (p; (ry)-p,(r, . 1)) is independent of ry,, which
makes Eq. (2.10) consistent.

The effective conductivity defined by Eq. (1.1) can now,
by making use of Egs. (2.6) and (2.10), be written as

(5,, + 3 4 W) (2.18)
n=1
with
4P = (p,0), (2.19)
and for n>2:
AP = f dr J- dr, .,
i @ ),, — 12 1
lek ."xnflnv (9
r?Z axlz»’ r?z —1n a‘xn — 1 nt
X (pik (rl)plm(rZ)"'pqs(rn — l)ptj(rn)>' (220)

This series expansion (2.18) is similar to the one developed
by Hori® with the difference that his series concerns a locally
isotropic material. :

For statistically isotropic materials all 4 {” reduce to a
constant times a Kronecker delta so that we can write Eq.
(2.18) in scalar form

ot =4 (1 + 34 <">). 2.21)
n=1

3. LOW-ORDER TERMS A{’

The first-order perturbation term is simply
A = (py) = ((0;—A8)/2 ) = [({o) —A)/A 16, (3.1)
Wthh vanishes when we choose A = (o).

In this case the second-order perturbation term as given
in Eq. (2.20) reads

xl?.k

1275 ) 8 o (o ()oifr, + 1)),

(3.2)

This dimensionless second-rank tensor is a function of the
two-point correlation function of the material. For the statis-
tical description of the polycrystalline material we follow the
cell model proposed by Miller®:

(1) The space is completely filled by nonoverlapping
cells within which the material properties are constant,

(2) cells are distributed in a manner such that the mate-
rial is statistically homogeneous,

@ _ 1 dr
y % f
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(3) the material properties of a cell are statistically inde-
pendent of those of any other cell,

(4) the material properties of a cell are statistically inde-
pendent of the geometrical distribution (shape, size, orienta-
tion and arrangement) of cells.

Because of the independence of the orientation of the
principal axes of the conductivity tensor on the geometry of
the cells the correlation function appearing in Eq. (3.2) can
be written as a product of a tensorial part and a spatial part:

(o) (r)o(r, + r) = (ol o P(ryy), 3.3)
where P (r,,) denotes the probability of finding the points r,

and r, in the same cell.
For a statistically isotropic material we have 4

=A™, withd ™ = lA (M 50 that Eq. (3.2) becomes

1 (0’2) J Xk O
@ = i Ty ——— P(r,). 3.4)
! 3 @m)(o)? N Fly 0% N
In spherical coordinates x, (d/dx, ) is simply #(d/3r),
whence
02 2T s )
ap= Lo, [Tag [Tas [ arrsing
3 7 4x(o)? Jo o o
x L (r—(l )P ®. (3.5)
ar

Assuming that there are no cells with infinite dimensions, so
that

lim [P(r)] =0,

>0

we arrive at (see Appendix A)

12

a1 s Lss,
3 (o)? 3

The third-order perturbation term of a statistically isotropic

material is given by

4O ; = (U>3 J f dr,,

Xk 0

(3.6)

X23,m

3 3
2 axlz,l 3 ax23,n

X AT (€ )00y + )T A0 + Ty +T23)),

where again we chose 4 = {o).
Now we write the operators appearing in Cartesian
form in Eq. (3.7) in terms of spherical harmonics:

x; 4 1
J‘dr_r_".a_xjf(r)_ 5 Jdr——f(r)-f—cuufdr?
(3.8)

3.7

X Yzﬂ(f')(l + 3 r > )[(r).

Assuming that all correlation functions do not depend on the
direction of the vector connecting two consecutive points
whenever these points are infinitely far apart we can write:

1 x; d 1
o dr > axjf(l') 3 i () —f(0)]
1 1
+ —Cyzufdl'j
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(3.9)

Yo, (P (r).
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TABLE 1. The nonzero elements ¢
cal tensors.

;. connecting the Cartesian and spheri-

NV Sf6m)e,, m=-2 p=-—1 p=0
xx 1 —\/2/3 1
Xy i -
Xz 1 —1

yx i — i
y —1 ~V3 ~1
yz i i

2x 1 —1
zy i i

zz 2\/%

The constants c;;, connecting Cartesian with spherical ten-
sors'® are symmetric and traceless in the indices i and are
given in Table 1. Putting Eq. (3.9) into effect in Eq. (3.7), we
get

qo_ L 1 1
9 (o)’ 3 @m¥o)’
X jdrlzfdrza 3 1 3 Y, (F1) Y2, (Fs3)
Naras
XATR X DO (X1 + 110 (0 + T +03)),  (3.10)
and evaluating the three-point correlation function for all

possible values of the indices &, /, m and n (see Appendix B),
we arrive at

ckl,y. cmn,n

AP = ( + —a3)5;, 3.1
where we define
as = l CrrpCikn ; f dry, f dr,;
3 4m)?
X 31 Ylu(;lz)Y2n(;23)P (rp,ra,rs), (3.12)
Fiaras

with P (r,,r,,r,) denoting the probability of finding the three
points in the same cell.

By using the addition theorem for spherical harmon-
ics!® and noting that P (r,,r,,r;), because of statistical iso-
tropy, only depends on r,,, r; and = cos ™ '(F},-%,3), Eq.
(3.12) can be given a geometrical meaning:

J“"’ dri, J‘ dr,;
a; =
0 "12 0 r23

X P (rir3,0), (3.13)

measuring the deviation of the cell form from a sphere.’
The fourth-order perturbation term as given in Eq.

(2.20) reads

A 514) mfdrnfdl‘23fdl'34

f d0 sinf —(3c0526 -0

Xk 0 Xazm 0 X, d
ry 0%y, "323 X33 "24 X34
X (ark (rl)alm(r2)0no(r3) (l'4)) (3 . 14)
with A = (o).

By applying Eq. (3.9) to the variables ry,, ry;, and ry,
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and evaluating the four-point correlation function for all
possible values of the indices and all configurations of the
four points r,, r,, I3, and r, giving a nonvanishing contribu-
tion, Eq. (3.14) results for a statistically isotropic material in
(see Appendices B and C):

4
AW =38, —'217— 130 3+%a4,0] + 831 ”‘%_Eas
+ =@y, + 194, + 102, 7)), (3.15)

which, because we are dealing with a one-phase polycrystal-
line material, can be written as (see Appendix A)

@) _ 821 _ 5 _ 1 3
A% =8 2 0% T %40

+ @y + 192, + 10a, )], (3.16)
where we define
Ay = %Ckl,/,tclm.'qcmk.v(4ﬂ') -3 f dr]2 f dr23
X Jdr34 (”;’2"%3"24) - 1Y2,u(;12) Y,,(P23)
X YZV(F:M)P (rlyrZ’r3)r4)) (3 17)

with P (r,,r,,r;,r,) the probability of finding the four points
in the same cell, and

1 -3
Ay = ';Ckl,,uclm,ncmk,v(4ﬂ-) J dr, Jdrza

X fd"u (rar3sria) ~ 1Y2,u(;I2)Y21](;23)Y2v(f34)

X P(r),ryrs,r,), (3.18)

with P (r,,ry;r;,r,) the probability of finding the points r, and
r, in one cell and the points r, and r, in another cell.

The factors a, , and a, ; are defined by replacing
P(r,ryr;,r,) in the definition of a, | by P (r,,ry;T,,r,) respec-
tively P (r,r r,,ry).

The probability P (r,,r,;r;,r,) introduces the notion of
the exclusion principle: Since the probability of finding the
four points r, r,, I3, and r, in the same cell is already taken
into account in P (r,,r,,r;,I,,), this probability must be ex-
cluded from P (r,,r,;r,,r,). When we denote the probability
of finding the pair (r,,r,) and the pair (r,,r,) in one, possibly
the same, cell by P(r ,r, | ry,r,), we can write

P(rryryr) = P(rur, | rury) — P(rrprary). (3.19)

Calling probabilities like P (r;,r,;r;,r,) restricted"' and prob-
abilities like P (r,,r, | ry,r,) unrestricted, we can state that in
all correlation functions we may replace restricted by unres-
tricted probabilities if at the same time we replace moments
by cumulants.

4. DUAL PERTURBATION SERIES

Because the conductivity tensor and the resistivity ten-
sor are locally related by o, p,; = 6,, it is purely a matter of
consistency to have the same relationship between their ef-

fective values:
d* ok
Tix Pij = 5,7-

“.1)

So the determination of p}; will lead to an equivalent math-
ematical problem.
Starting again with Egs. (2.1), (2.2), and (2.3), we can
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write because of Eq. (2.2)
J = curld. 4.2)

Following the same procedure as in Sec. 2, using the free-
space Green’s function for the Laplacian, and dividing the
resistivity tensor into two parts,

PA) = p[6;+ q,(n)], (4.3)
we arrive at the following recursion relation:
—1 X2, d
Jr+D(r) = —-——f dry€., — €, ——
i (ry) ar Jy 2€ 5k "?z Kl 3)‘2,1
quo (rz)J E)”)(rz)r (44)

where €, is alternating Levi-Cevita tensor, having the
property

€iik €rtm = 5iﬁsjm - 5,-m5jl- 4.5)
The effective resistivity is defined by
(Epy =p3{J). 4.6

Using Eq. (4.4), we can express pf in a perturbation series in
terms of the current density:

p?}‘<J,-)=u[(J,-)+<q,-,~)(J,->+ i] (g; 7). @

So we arrive at a result analogous to the one given in Egs.
(2.18)-(2.20)

P =u(6.-,-+ ) Bé-")), (4.8)
n=1
with
B =(q,), (4.9)
—1
BSJ'Z) = Jdrn(akmsln = 84, O1)
41
X0 0
. i (r1)g,.4r)), 4.10
'3!2 ax1 (9 (r)q J( 1)) ( )
—1\2
8= () [ar [ dru@unbi 50,81
47
X120 3 Xy ad
X(ao.sﬁ t T 50 6 s) e
i re Fly OXpa, rl, 0%y
X{Gix (1), (r2)q,(r3)), 4.11)

and for B f.j"), n>4, there exist expressions corresponding to
A in the same way as B and B {’ correspond to 4 {? and
4. Writing the Cartesian operator x; 3/dx; in terms of
spherical harmonics as we did in Eq. (3.9), we get

—ilfdr(a 81— 81, 8,) 0 (o)
4 km"in knYim '3 axm

- %%Lf(w)—fm)]

i 1
— i f drX — Yy, (I @), 4.12)

This result exhibits the close relationship existing between
the 4 {? and B {”, which enables us to write down the B {¥
terms immediately, once we know the corresponding A {

terms. For a statistically isotropic polycrystal we have
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—ub.
BO= - (a) = %(’%):o @“.13)
12
B@— _ 2 , (4.14)
3 (p)?
3) __ 4 1 (pd)
3O =(1 4+ ) o 4.15)
( ,4) 12\2
B(4): ﬁ(— —;_I— — 1—60(13'_ ‘_}"a4‘())+ <€7 )>4
4 8 1 p
X 55+ w5as — (@, + 19a,, + 10a,5)]
_ (p'z)z[ 8§ 1 3
= + LT T 0% T %0
)
— ——(ay, + 192, + 10, )], (4.16)

where we have chosen o = {p>.

5. INEQUALITIES AND BOUNDS

The perturbation terms 4 f-j") as introduced in Eq. (2.20)
are defined by

(PADE V(@) =AFNE), n>l, (5.1
but can also be given by'"*
(Ef")(")E Em)(r)) = — A fj’l + M)<Ei) <Ej)! nm>1,
(5.2)
and
(p,-j(r)Egn)(r)Ej(m(r)) =A gjn mE gy (Ep, n,m>0ts )

Similar expressions hold for the perturbation terms B f;”.

From these equations several inequalities concerning
the perturbation terms 4 {” and B {” can be derived: Consid-
er, for instance, the quadratic expression

([EM@®+E"H(0)]°)>0, (5.4)
from which we derive, using Eq. (5.2) in principal directions
of 47,

A (_2n) + ZA (Zn + 1) + A (_2n + 2)<0, (55)
By using inequality (5.5) for n = N, N + 1,--- and summing,
we deduce

n>1.

A 42 S 400, N>, (5.6)
n=2N+1
from which it follows
2N — 1

a;*</1(1+ v A$">+%A§2N>), N>l (5
n=1

Doing the same thing with the dual series, we find bounds for
the effective conductivity:

M —1 oM —1
(=5 o)

m=1

i

2N —1

<oF<A (1 + > A" +44 5””), MN>1. (5.8)
n=1

We do not intend to exploit this bounding expressing in this

paper. Our aim is to find bounds for the form parameters

introduced in Egs. (3.12), (3.17), and (3.18) and, in order to
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derive the narrowest bounds possible, we will make an ex-
cursion to locally isotropic materials with random field
{o(r)}. Making use of the nonnegative character of the con-
ductivity and of Eqs. (5.2) and (5.3), we can write:

(o(NE {E"(r)) >0, (5.9)
which for a statistically isotropic material leads to
— AP 4 4930, (5.10)

When we choose 4 = (o), we get, cf. Egs. (3.6) and (3.11)
5, + (5 + @2)8,>0, (5.11)

which, together with the inequality, valid for a nonnegative
stochastic variable,

6, + 6520, (5.12)
leads for the extremum 6, = — &, to an upper bound for
a,<2. (5.13)

In order to arrive at a lower bound, we consider the Schwarz
inequality

(0”(NE ("(1))*<{0"?) (o (E ((DE ("(r)), (5.14)
which leads to (see Appendix C)
(—38)°<8,[846 + @) + 855G — ay)]. (5.15)

In general it holds §5<8,8, and 83<8,. When we take §5<¢5,
and §2~68,5,, which is realizable for the random field {o(r)}
of, for instance, a two-phase material, we find the lower
bound for a; to be zero, so

0<a,<2. (5.16)

Making use of the Schwarz inequality,

(EPE D)’ <(E PME V(1)) (EP(E PA(r)), (5.17)

we derive from Eq. (5.2) for a statistically isotropic material
(AP)Y<APg®, (5.18)

For a locally isotropic material it follows, cf. Egs. (3.11) and

(3.15), that

(G +@)8:1°< = 38,[84( — 57 — @1 + @)

18— 2L7 +ay+ag, +a,,+agy)]
(5.19)

Taking the above-mentioned values for the normalized mo-
ments, we get an upper bound for a, ,

y0<5t; — 3a. (5.20)

Following the same procedure for the dual perturbation

terms B ", we arrive at a lower bound for a, o, which, to-
gether with the upper bound, leads to

(5.21)

2 3 2 i 2
— 305 + 53K, o< — 3as,

in agreement with Elsayed.”*

Returning to our problem for locally anisotropic mate-
rials, we see that inequality (5.18) leads to an upper bound
for the linear combination of form parametersa, , i = 1,2,3,
as given in Eq. (3.16), whereas the corresponding inequality
in terms of B ™ leads to a lower bound:

4 1 3 2 3
-0y + ——aj — %0
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<+.0(a4,1 + 19a,; + 10a, ;)
~ 2t la,, (5.22)

2 1
ST %% " 0
where we have taken the maximum value of §3/53 = 4.
Taking into account the relatively small contributions
of @; and a, , because of Egs. (5.16) and (5.21), we can ap-
proximate the bounds given in Eq. (5.22) by

4

27

S—(@y, + 19a,; + 10a,) S = (5.23)

6. RENORMALIZATION

We recall Eq. (3.9), which we wish to write symbolical-

ly as
Jd 1

x 3 R 6.1)
The operator R divides the correlation function into two
parts if no cells with infinite dimensions are present in the
ensemble, while the operator R, contracts two consecutive
points in the correlation function.

When we evaluate the R , operators in the 4 {” terms,
we get new terms D {7, in whlch only the operators R, and
Y,, appear:

1
- ?‘R0+ YZ;L‘

A f-j") =4 f-;')(R wRos YZH), (6.2)
D ,(-j") =D f]f')(RO, Yz,u)~ (6.3)
Expressions for the 4 ™ in terms of D ™ are
H_ pd
A fj) =D Ej,),
1
AP=DP + P @YD, (6.4)
1 1
AP =D 1 DY DO L DD DY
1
+1DP DYDY,
from which we derive
(n) O Y0 (n )
z A Z D+ 2 DY Z D
IO LI
1 1 1
_ ( EfoD (n) (6 5)
ITsepnm) | ’
1 — S 3rD i
Evaluating the R, operator in D {", we get
m _
D’ = (py),
1
D(Z) _<p ) +ck1;l.I7;
x f dr,z Yo ) PP ED),
D 5,3) ,, — 3kt o fdrlz Y, (F12) P (rl)pl(r2)>
l
oo f driy Y2#<r12)<p,k EP(r)
+$Ck1,u Cmn,y Jd 12J-dr23
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1
X___..___
"?2 "23

X APk )P 1P (T3))

and so on.
Now we define the renormalized perturbation tensor:

YZ,u(rIZ) Y,,(%23)

(6.6)

Gy=py— P+ o= —L—1), 6.7)
with principal values
o,—A
6,=3— (no summation). 6.8)
o+ 24
Summing the sequence of Egs. (6.6), we have
z D(") — z Tfj" ) (6.9)
with
(1) — (UU>

T(z) Ck/,l - J- drlz Yz;;(’lz)(a',k (ry )01,("2» (6.10)

T(B) Crip Cmnm @n fd 12fdr23

X an("zs) (G (rl)alm(rl)anj(rB)) »
and so on.
This result leads us to the renormalized series expan-
sion of the effective conductivity:

Y 2;;(" 12)

1+237T®
1—13¢7®™ @10
3 1 i

with 7" defined in Eqs. (6.10).

As for the effective resistivity it is possible from Eq.
(4.12) to derive an analogous formula. The renormalized
perturbation tensor has the principal values:

o= 4 _ 3 PiTH ___33‘_—1#__ ‘
l 1‘+‘§qi 2pi+ o, +2/u ’
1
for = —. 6.12
p= (6.12)
So the dual series can be written
S F A
= —— (613)
Al 142zpre

i

and it is concluded that the renormalized series given respec-
tively in Egs. (6.11) and (6.13) are consistent with Eq. (4.1).

The optimal value of 4 may be determined by the condition
that the sum of 7 vanishes, but because the terms T'{”
depend on quantities concerning the random field {o(r)}
and on geometrical quantities concerning the texture, which
are independent, it is not possible to make the sum of T
equal to zero solely on the basis of knowledge of the random
field {o(r)}. That is why the optimal value of A follows from
the condition that the trace of the first term T’ vanishes:
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—A

TP =(6,)=3 Z Y =0. (6.14)
Equation (6.14) leads to a cubic equation for A:
— -::(01 Oy + 00,4 0y 0)4 — %crl 0,0,=0, (6.15)
which can also be written in terms of fluctuations:
A% = o) (1 =364 — (o) (1 — 28,4+ 6) =0, (6.16)
with solution
= (0)(1 = 38, + 36, — —03). (6.17)
Equation (6.14) leads also to a cubic equation for u:
1+ (pr+p2+pu* —4p1 paps =0, (6.18)

which is equivalent with Eq. (6.15) for A = 1/u.
Equation (6.14) is equivalent with the solution of the
effective medium theory'*"* and Schulgasser’s'* Model 0.
The second term in Eq. (6.10), 7{, vanishes because
we are dealing with a statistically isotropic material, for
which we can write 7 and 7 in terms of the form param-

eters defined in Egs. (3.12), (3.17), and (3.18):

TG = Tloa3 (6%,

T® = [540 + 7@, + 1924, + 102, 3)1(6%)7, (6.20)

with (6*) =6, — %63 + -~ and (¢°) =68, — %6% +
Summarizing, we may state that the effective conduc-

tivity o* of a statistically isotropic polycrystalline material
to fourth order is given by

(6.19)

a*:/I{1+——a,,(a3)+[———a40+ ~o5 (@ + 1924,

+ 10, )1(6*)?), (621)

with A given by Eq. (6.15) and the form parameters a bound-
ed by

2
O<a3<3)

- %az + ‘3‘a§<a4 0<%a3 - 3a§» (6.22)

2

— =S (@ + 1904, + 10, ) S

27
Let us finally apply the renormalization procedure to the
two-dimensional case, where formally the same series expan-

sion is valid, with the difference that factors % are replaced by
factors % and the spherical harmonics Y, , are replaced by
exponents e"?, u = + 2.

Because no rotationally invariant products of an odd
number of traceless G,(r) components nor of an odd number
of exponents ¢ can be made, all terms T'{” (n>2) vanish
while the condition 7¢" = 0 immediately leads to the effec-

tive conductivity: o* = (g, 0,)"/?, in agreement with
Dykhne!” and Mendelson.'®

APPENDIX A: CENTRAL MOMENTS

In order to promote a unified notation, we change the
triplet of independent parameters {¢,,0,,03,} into
§<0,6,,6,}, where §,, is defined as the nth normalized
moment:
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8,= "/ ()", n>l. (AD
By means of the invariance equation
mnm 3 ! n— ’ mmn —
o=’ + (0 a3, (A2)

we see thatall §,,, n>4, can be expressed in terms of §, and 8,
viz.
8,=20% 8,=36,8, 8,=263+83 etc. (AI)

For the averages of the fluctuations of the resistivity
tensor an analogous recursion relation exists. The connec-
tion between the two sets is expressed by

1

)= : (A4)
(1= %62 + 6,
<p,2> 8, —28;,+ %5%
2 = 1 2 (AS)
©) (1-15)
(p") 53—%‘%4‘%6253"‘%5%“5%
—_— = = T . (A6)
) (1 —15)
Extreme values for §, and 8, are §, = &, = 2 for the limiting
case of 0, = 0,€0yand §, = §, 8§, = — 1 for the limiting

case of 0, €0, = 0,.

APPENDIX B: THE AVERAGE VALUE OF PRODUCTS OF
TENSOR COMPONENTS

The average value of the product of two components of
a second-rank tensor with random orientation is a compo-
nent of an isotropic fourth-rank tensor:

(o o) =aby 8+ b5, 6,;+ ¢85, (B1)

From the symmetry of the conductivity tensor it follows that
b = ¢, and because the tensor is traceless we have

(o} 05) =9a+ 6b=0, (B2)
so that
(i o) == [ — 2848+ 38481+ 8,;8:)].  (B)

Proceeding in the same way for the product of three and four
tensor components, we arrive at

(O/k Ol 0,
= =AY 1684 8, 8,y — 12[84 (81 8y + 8 8,1)
+ 81,8, 815+ 8, 61) + 8,08, 61y + 81 O) ]
+ 98,8 81 + 84 6,1) + 8. (81 8y + 61 61)
+ 8:(841 6,j + Ok 64) + 8,48k1 81 + 81 61)1 s
(B4

and

(Uzk Ulm ano pj>
= —(0,4) {451'1( 5lm 6no 12} 2[61k 5lm((s
n_) op) + 51k 6no(51p 6"!] + 61] 6mp)
+ 61k p](aln ‘Smo + 6!0 6mn)
+ (slm 6n0(5lp 5’(] + 61] 6kp)
+ 61m é '(6171 5/(0 + 510 6kn)
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+ 8,106,488 1cm + 8im 611)]

+ 3[Bit Sim + Oim 611 )Bp 80 + 6,;6,,)
+ (8in 810+ 810 81X (015 O.j + 6, 6,)

+ (85, 84+ 861,)(81, 8,0 + 810 8,1 }- (B5)

APPENDIX C: EVALUATION OF THE FOURTH-ORDER
PERTURBATION TERM A”

Elaborating the Cartesian operators xd/dx in terms of
spherical harmonics, as given by Eq. (3.9), in the fourth-
order perturbation term 4 {;” of a statistically isotropic mate-
rial leads to

1 1
APV = — — (o)) + — (0},2)?
i <0.> 27 < H) 27 ( m
2 1 1
—_— drnJ.drB———-
@y ’312"33

- _3_ ckl,ycmn,n
XY, 2,1(; 12Y 217(;' {04 (00, (0) a2 (rs))
1 1

3 Cktuopm (4_17-)—2 f dr),
1 o X
X f dr,; 5 You(P1) Yo, (P23)

F12733
X (i (r ) Y, X(r,)05(r3))

1
+ Ckl,,ucmn,'qcop,v W J‘ drlZ J dr23 f dr34
1

X = V(i)Yo () Yo (P
Nar3ais
X (o7 (¢ )o7,.(r)a,,(r)o 2iTa))-
In the third term we have
(g (r)op,(r)o r,liz(r3)>
= (0} O} a:u‘2>P(rl’r2’r3)

+ (0',,,( a;m) (U:liz)P(rlyrZ;r3)’

(&)

(C2)
with
P(r,ryr3) = P(r,r; | 13) — P(r,,r,,r3)
= P(r,ry) — P(rryr;),

of which the term P (r,,r,) vanishes upon integrating.

(C3)
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In the fourth term we have analogously
(o (r)o 7)o ;,.("3»

= ({ok 0'1'02 0';1) — (oh 0;;:) (0'1'02>)

XP(r,ryr3) + (o U;;i) (0,'02>P(l‘1,r3). (C4)
With the help of Eq. (5.2) we deduce from
(EP)E M) = —AP(E)E) (C5)
that the following holds on the basis of Eq. (3.9):
1 1 f J' 1
— Citp Cimy —— | @F dry; ——
3 o Timan (477)2 ? = "?2’33
X Yoo (P1) YonPa0ia (€)1 (1)) = 2(02). (C6)

Now we are able to write 4 ¥ in terms of the form param-
eters as defined in Sec. 3:

4@
1,7
- % ‘2‘5% + 504,054 + 1_;00_5 Hag, + 192, , + 10ay ).

(o))
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Erratum: The Feynman maps and the Wiener integral

[J. Math. Phys. 19, 1742 (1978)]

A. Truman

Math Department, Heriot—Watt University, Edinburgh, Scotland

The proof of Theorem 6 in the above paper contains a
mistake. I am grateful to David Elworthy of the Math Insti-
tute at Warwick University for pointing out the error. Sub-
stantially the same result is contained in Theorem 6’ below.
This similar result is strong enough to validate the assertions
following Theorem 6 in the original paper. We require the
following lemma.

Lemma: Let (1 + K) : H—H be a bounded linear sur-
jection. Let P,, : H—H be an orthogonal projection for
m = 1,2,--. Define the orthogonal surjective projection Q,,

: H—(1 + K)P, H, for m = 1,2, Then, if P, —1, 0, 1,
as m— o0, 1 : H—H being the identity.

Proof: Let ¥'cH be given by ¥’ = (1 + K )y, for some
yeH. Theny' =(1 + K)P,v + (1 + K)(1 — P,,)y. Hence,

me, - (1 + K)Pmy + Qm(l + K)(l - Pm)y (1)
Sy =Y<L+ K |L|P,y — v]|—0, as m— e,
V y'eH.

Theorem 6':Let (1 4+ K ) : H—H be a linear injection
with K trace class and det(1 4+ K )5£0, det being the Fred-
holm determinant. Let g : H—C and define g, , x:H—Cby
g, . x ¥l =gl(1 + K)y]. It is convenient to denote by

(e,s[-(gl + I\)
g, . O] =exp(2i(1<y,1<y) + i(Ky,y))gH.K[rl, @
5 S

so that (e¥g, , x): H—C. Then, if ge % (H),
(eXg, . x)e7 (P H)and

Flefg, ) = | det(l + K)["F g, Ims<O,

s£0.
(3)

Proof: Substitution for (eXg, , ) gives, form = 1,2,

e K { , /
S ‘m[e{'\gl + K] = ij exp(—z_s_“me ”2) g[me ] d (Pmy)’
C))

where Q,, : H—(1 + K )P, H is the surjective orthogonal
projection,y’ = (1 + K)P, yandN,, = (2mist /m)~ "™'? the
principal branch of the square root being taken.

We now change integration variables from d (P, ) to
d (Q,,7") Choose ¢/eP, H such that f; = (1 4+ K )e],
i=0,1,2,....m — 1, form an orthonormal basis for
(1 + K)P, HHere, fori=0,1,...m — 1,

m =1

r__
e = 3 Adye,

j=0
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with

so-[e(TE ) o(2 =)

j=0,12,.,m —1,G(0o,7) =t — sup{o,7}, the ¢/s forming
an orthonormal basis for P, H. Then the 4,’s must satisfy

il mi lAik (M +K)ew(1 +K)e)d, =6, 5)

m
k=0 =0

ijy=0,1,2,...m — 1. The 4 ,-j’s exist because the matrix with
entries ((1 + K)e,,(1 + K )e;) is symmetric and positive
definite.

Taking determinants we arrive at
|detd |
= |det(1,, + P, KP,+ P, K*P,+ P, K*KP,)| ~ 172 (6)

This is just the Jacobian determinant for the change of inte-
gration variables. To see this write

, m\v/2m—_ 1 m\l/2m=1
Y = (—) N vify Pay= (—) > Aren, (D)
t ) t K=o

giving, forj = 0,1,2,...m — 1,

—_— m— 1 m—1

v= S (LU +K)e)dyi= S @Ay (®)

k=0 k=10

A "' being the matrix inverse of 4. Since (1 + K )eo, (1 + K )e,,
..(1 +K)e,, , are linearly independent vectors,

(1 + K) : H—H being an injection, we obtain
O<idetd | < 0.

Thus, changing integration variables, for Ims < 0, leads
to

'7:n[esKgl +K] :Nm|det(1 +PmLPm){ 1

j ' ! ’
x [ exp(L1Qur ) 8101 4@,
)
where L is the trace-class operator L = (K + K* + K *K),

det denotes the Fredholm determinant, and the integration
variables d (Q,, ') denote I/, 'dy.

J=0

When Ims <0, for ge.7 (H),

glyl= L exp [y, )] du (¥,

arguing as in Theorem 3, we obtain

T lefgr k] = |det(l + P,LP,)| =7

< [eo(SEvem)dum. (0

© 1979 American Institute of Physics 1832



Letting m— 0, since det is trace-class continuous and

P, LP, —L intrace norm as m— oo, the result for Ims <0
follows from the dominated convergence theorem for the
measure i, and the factorization properties of det.

When Ims = 0, s540, the justification of the change of
integration variables and the validity of the last equation
require closer attention. The required result for Ims = 0 fol-
lows by looking more carefully at our definition of %7,. Ex-
plicitly we have

R—w

R R
Ful 1 =Ny lim [ [ (feop,)r1d @ (1D)
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where the finite limits of integration — R and + R refer to
the integration variables 4y, j = 0,1,2,...,m — 1 and the
complex Gaussian e,[y] = exp[(i/2s)]|y||*], e, : H—C. The
result for ims = 0 now follows in much the same way as in
the proof of Theorem 3. (For further details see Ref. 1 where
a more general result is proved.)

Theorem 7 requires the additional hypothesis: For a.e.

reals, f(s) = lirg fs—ie).

'K.D. Elworthy and A. Truman, *“The Feynman maps and the anharmonic
oscillator,” in preparation.
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Erratum: A nonlinear scalar field theory in isotropic homogeneous

space-time
[J. Math. Phys. 19, 2253 (1978)]

J. A. Okolowski
221 Irving Street, Chester, Pennsylvania 19013

Equations (1.4) and (3.10) are printed with typographical
errors; the corrections are as follows: Eq. (1.4) should read

L?_(Rsa_*”)_ ! i(sinhz 3_“”)

R Ot ot sinhzx aX 3X
2
(2 (), L]
sinh’y sing | d6 a0 sinf J¢?

af
R* = =0
M

and Eq. (3.10) should read

u(0)=0, 1lim u(y)=0.
Y—>c
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